
Developer Guide

SDK 1.6

2

Prepared Title

Stephane Piskorski
Nicolas Brulez AR.Drone Developer Guide
Approved Date Revision File

February 24, 2011 SDK 1.6

Notations used in this document :

$ This is a Linux shell command line (the dollar sign
represents the shell prompt and should not be typed)
This is a console output (do not type this)

Here is a file_name.
Here is a macro.

iPhone®and iPod Touch®are registered trademarks of Apple Inc.
Wi-Fi®is a trademark of the Wi-Fi Alliance.
Visuals and technical specifications subject to change without notice. All Rights reserved.
The Parrot Trademarks appearing on this document are the sole and exclusive property of Parrot S.A. All the others
Trademarks are the property of their respective owners.

Contents

A.R.Drone Developer Guide 1

Contents i

I SDK documentation 1

1 Introduction 3

2 AR.Drone Overview 5
2.1 Introduction to quadrotor UAV . 5
2.2 Indoor and outdoor design configurations . 7
2.3 Engines . 7
2.4 LiPo batteries . 8
2.5 Motion sensors . 8
2.6 Assisted control of basic manoeuvres . 8
2.7 Advanced manoeuvres using host tilt sensors . 9
2.8 Video streaming and tags detection . 10
2.9 Wifi network and connection . 10
2.10 Communication services between the AR.Drone and a client device 11

3 AR.Drone SDK Overview 13
3.1 Layered architecture . 13
3.2 The AR.Drone Library . 14
3.3 The AR.Drone Tool . 15
3.4 The AR.Drone Control Engine - only for Apple iPhone 16

4 ARDroneLIB and ARDroneTool functions 17
4.1 Drone control functions . 17

ardrone_tool_set_ui_pad_start . 17
ardrone_tool_set_ui_pad_select . 17
ardrone_at_set_progress_cmd . 18

4.2 Drone configuration functions . 19
ardrone_at_navdata_demo . 19
ardrone_at_set_navdata_all . 19

5 Creating an application with ARDroneTool 21
5.1 Quick steps to create a custom AR.Drone application 21
5.2 Customizing the client initialization . 22
5.3 Using navigation data . 22

i

ii

5.4 Command line parsing for a particular application 24
5.5 Thread management in the application . 24
5.6 Managing the video stream . 25
5.7 Adding control devices . 26

6 AT Commands 29
6.1 AT Commands syntax . 30
6.2 Commands sequencing . 30
6.3 Floating-point parameters . 31
6.4 Deprecated commands . 31
6.5 AT Commands summary . 32
6.6 Commands description . 33

AT*REF . 33
AT*PCMD . 35
AT*FTRIM . 36
AT*CONFIG . 37
AT*COMWDG . 37
AT*LED . 38
AT*ANIM . 38

7 Incoming data streams 39
7.1 Navigation data . 39

7.1.1 Navigation data stream . 39
7.1.2 Initiating the reception of Navigation data 40
7.1.3 Augmented reality data stream . 42

7.2 The video stream . 43
7.2.1 Image structure . 43
7.2.2 Entropy-encoding process . 49
7.2.3 Entropy-decoding process . 50
7.2.4 Example . 51
7.2.5 End of sequence (EOS) (22 bits) . 52
7.2.6 Intiating the video stream . 53

8 Drone Configuration 55
8.1 Reading the drone configuration . 55

8.1.1 With ARDroneTool . 55
8.1.2 Without ARDroneTool . 55

8.2 Setting the drone configuration . 57
8.2.1 With ARDroneTool . 57
8.2.2 From the Control Engine for iPhone . 58
8.2.3 Without ARDroneTool . 58

8.3 General configuration . 59
GENERAL:num_version_config . 59
GENERAL:num_version_mb . 59
GENERAL:num_version_soft . 59
GENERAL:soft_build_date . 59
GENERAL:motor1_soft . 59
GENERAL:motor1_hard . 59
GENERAL:motor1_supplier . 59
GENERAL:ardrone_name . 59
GENERAL:flying_time . 60
GENERAL:navdata_demo . 60

iii

GENERAL:navdata_options . 60
GENERAL:com_watchdog . 60
GENERAL:video_enable . 60
GENERAL:vision_enable . 61
GENERAL:vbat_min . 61

8.4 Control configuration . 62
CONTROL:accs_offset . 62
CONTROL:accs_gains . 62
CONTROL:gyros_offset . 62
CONTROL:gyros_gains . 62
CONTROL:gyros110_offset . 62
CONTROL:gyros110_gains . 62
CONTROL:gyro_offset_thr_x . 62
CONTROL:pwm_ref_gyros . 62
CONTROL:control_level . 62
CONTROL:shield_enable . 63
CONTROL:euler_angle_max . 63
CONTROL:altitude_max . 63
CONTROL:altitude_min . 64
CONTROL:control_trim_z . 64
CONTROL:control_iphone_tilt . 64
CONTROL:control_vz_max . 64
CONTROL:control_yaw . 65
CONTROL:outdoor . 65
CONTROL:flight_without_shell . 65
CONTROL:brushless . 66
CONTROL:autonomous_flight . 66
CONTROL:manual_trim . 66
CONTROL:indoor_euler_angle_max . 66
CONTROL:indoor_control_vz_max . 66
CONTROL:indoor_control_yaw . 66
CONTROL:outdoor_euler_angle_max . 66
CONTROL:outdoor_control_vz_max . 66
CONTROL:outdoor_control_yaw . 67
CONTROL:flying_mode . 67
CONTROL:flight_anim . 67

8.5 Network configuration . 68
NETWORK:ssid_single_player . 68
NETWORK:ssid_multi_player . 68
NETWORK:infrastructure . 68
NETWORK:secure . 68
NETWORK:passkey . 68
NETWORK:navdata_port . 68
NETWORK:video_port . 68
NETWORK:at_port . 68
NETWORK:cmd_port . 69
NETWORK:owner_mac . 69
NETWORK:owner_ip_address . 69
NETWORK:local_ip_address . 69
NETWORK:broadcast_ip_address . 69

8.6 Nav-board configuration . 70

iv

PIC:ultrasound_freq . 70
PIC:ultrasound_watchdog . 70
PIC:pic_version . 70

8.7 Video configuration . 71
VIDEO:camif_fps . 71
VIDEO:camif_buffers . 71
VIDEO:num_trackers . 71
VIDEO:bitrate . 71
VIDEO:bitrate_control_mode . 71
VIDEO:codec . 71
VIDEO:videol_channel . 71

8.8 Leds configuration . 73
LEDS:leds_anim . 73

8.9 Detection configuration . 74
DETECT:enemy_colors . 74
DETECT:enemy_without_shell . 74
DETECT:detect_type . 74
DETECT:detections_select_h . 74
DETECT:detections_select_v_hsync . 75
DETECT:detections_select_v . 75

8.10 SYSLOG section . 77

9 F.A.Q. 79

II Tutorials 81

10 Building the iOS Example 83

11 Building the Linux Examples 85
11.1 Set up your development environment . 85
11.2 Prepare the source code . 86
11.3 Compile the SDK Demo example . 87
11.4 Run the SDK Demo program . 87
11.5 Compile the Navigation example . 88
11.6 Run the Navigation program . 89

12 Building the Windows Example 91
12.1 Set up your development environment . 91
12.2 Required settings in the source code before compiling 93
12.3 Compiling the example . 93
12.4 What to expect when running the example . 94
12.5 Quick summary of problems solving . 95

13 Other platforms 97
13.1 Android example . 97

Part I

SDK documentation

1

1 Introduction

Welcome to the AR.Drone Software Development Kit !

The AR.Drone product and the provided host interface example have innovative and exciting
features such as:

• intuitive touch and tilt flight controls

• live video streaming and photo shooting

• updated Euler angles of the AR Drone

• embedded tag detection for augmented reality games

The AR.Drone SDK allows third party developers to develop and distribute new games based
on AR.Drone product for Wifi, motion sensing mobile devices like game consoles, the Apple
iPhone, iPod touch, the Sony PSP, personal computers or Android phones.

To download the AR.Drone SDK, third party developers will have to register and accept the
AR.Drone SDK License Agreement terms and conditions. Upon final approval from Parrot,
they will have access to the AR.Drone SDK download web page.

This SDK includes :

• this document explaining how to use the SDK, and describes the drone communications
protocols;

• the AR.Drone Library (ARDroneLIB), which provides the APIs needed to easily com-
municate and configure an AR.Drone product;

• the AR.Drone Tool (ARDroneTool) library, which provides a fully functionnal drone
client where developers only have to insert their custom application specific code;

• the AR.Drone Control Engine library which provides an intuitive control interface devel-
oped by Parrot for remotely controlling the AR.Drone product from an iPhone;

3

4

• an open-source iPhone game example, several code examples that show how to control
the drone from a Linux or Windows personal computer, and a simple example for An-
droid phones.

Where should I start ?

Please first read chapter 2 to get an overview of the drone abilities and a bit of vocabulary.

You then have the choice between :

• using the provided library 5 and modifying the provided examples (10, 11, 12) to suit
your needs

• trying to write your own software from scratch by following the specifications given in 6
and 7.

2 AR.Drone Overview

2.1 Introduction to quadrotor UAV

AR.Drone is a quadrotor. The mechanical structure comprises four rotors attached to the four
ends of a crossing to which the battery and the RF hardware are attached.

Each pair of opposite rotors is turning the same way. One pair is turning clockwise and the
other anti-clockwise.

5

6

(a) Throttle (b) Roll

(c) Pitch (d) Yaw

Figure 2.1: Drone movements

Manoeuvres are obtained by changing pitch, roll and yaw angles of the AR.Drone .

Varying left and right rotors speeds the opposite way yields roll movement. This allows to go
forth and back.
Varying front and rear rotors speeds the opposite way yields pitch movement.
Varying each rotor pair speed the opposite way yields yaw movement. This allows turning left
and right.

7

(a) Indoor (b) Outdoor

Figure 2.2: Drone hulls

2.2 Indoor and outdoor design configurations

When flying outdoor the AR.Drone can be set in a light and low wind drag configuration (2.2b).
Flying indoor requires the drone to be protected by external bumpers (2.2a).

When flying indoor, tags can be added on the external hull to allow several drones to easily
detect each others via their cameras.

2.3 Engines

The AR.Drone is powered with brushless engines with three phases current controlled by a
micro-controller

The AR.Drone automatically detects the type of engines that are plugged and automatically
adjusts engine controls. The AR.Drone detects if all the engines are turning or are stopped. In
case a rotating propeller encounters any obstacle, the AR.Drone detects if any of the propeller
is blocked and in such case stops all engines immediately. This protection system prevents
repeated shocks.

8

(a) Ultrasound sensor (b) Camera

Figure 2.3: Drone Sensors

2.4 LiPo batteries

The AR.Drone uses a charged 1000mAh, 11.1V LiPo batteries to fly. While flying the battery
voltage decreases from full charge (12.5 Volts) to low charge (9 Volts). The AR.Drone monitors
battery voltage and converts this voltage into a battery life percentage (100% if battery is full,
0% if battery is low). When the drone detects a low battery voltage, it first sends a warning
message to the user, then automatically lands. If the voltage reaches a critical level, the whole
system is shut down to prevent any unexpected behaviour.

2.5 Motion sensors

The AR.Drone has many motions sensors. They are located below the central hull.

The AR.Drone features a 6 DOF, MEMS-based, miniaturized inertial measurement unit. It pro-
vides the software with pitch, roll and yaw measurements.

Inertial measurements are used for automatic pitch, roll and yaw stabilization and assisted
tilting control. They are needed for generating realistic augmented reality effects.

An ultrasound telemeter provides with altitude measures for automatic altitude stabilization
and assisted vertical speed control.

A camera aiming towards the ground provides with ground speed measures for automatic
hovering and trimming.

2.6 Assisted control of basic manoeuvres

Usually quadrotor remote controls feature levers and trims for controlling UAV pitch, roll, yaw
and throttle. Basic manoeuvres include take-off, trimming, hovering with constant altitude,
and landing. It generally takes hours to a beginner and many UAV crashes before executing
safely these basic manoeuvres.

Thanks to the AR.Drone onboard sensors take-off, hovering, trimming and landing are now
completely automatic and all manoeuvres are completely assisted.

9

User interface for basics controls on host can now be greatly simplified :

• When landed push take-off button to automatically start engines, take-off and hover at a
pre-determined altitude.

• When flying push landing button to automatically land and stop engines.
• Press turn left button to turn the AR Drone automatically to the left at a predetermined

speed. Otherwise the AR Drone automatically keeps the same orientation.
• Press turn right button to turn the AR Drone automatically to the right. Otherwise the AR

Drone automatically keeps the same orientation.
• Push up button to go upward automatically at a predetermined speed. Otherwise the AR

Drone automatically stays at the same altitude.
• Push down to go downward automatically at a predetermined speed. Otherwise the AR

Drone automatically stays at the same altitude.

A number of flight control parameters can be tuned:

• altitude limit
• yaw speed limit
• vertical speed limit
• AR.Drone tilt angle limit
• host tilt angle limit

2.7 Advanced manoeuvres using host tilt sensors

Many hosts now include tilt motion sensors. Their output values can be sent to the AR.Drone
as the AR.Drone tilting commands.

One tilting button on the host activates the sending of tilt sensor values to the AR.Drone . Oth-
erwise hovering is a default command when the user does not input any manoeuvre command.
This dramatically simplifies the AR.Drone control by the user.

The host tilt angle limit and trim parameters can be tuned.

10

2.8 Video streaming and tags detection

The frontal camera is a CMOS sensor with a 90 degrees angle lens.

The AR.Drone automatically encodes and streams the incoming images to the host device.
QCIF and QVGA image resolutions are supported. The video stream frame rate is set to 15 Hz.

Tags painted on drones can be detected by the drone front camera. These tags can be used to
detect other drones during multiplayer games, or to help a drone find its way in the environ-
ment. Both tags on the external and internal hull can be detected.

(a) 2D tags on outdoor shell (b) 2D tags on indoor shell

Figure 2.4: Drone shell tags

2.9 Wifi network and connection

The AR.Drone can be controlled from any client device supporting the Wifi ad-hoc mode. The
following process is followed :

1. the AR.Drone creates a WIFI network with an ESSID usually called adrone_xxx and self
allocates a free, odd IP address.

2. the user connects the client device to this ESSID network.

3. the client device requests an IP address from the drone DHCP server.

4. the AR.Drone DHCP server grants the client with an IP address which is :

• the drone own IP address plus 1 (for drones prior to version 1.1.3)

• the drone own IP address plus a number between 1 and 4 (starting from version
1.1.3)

5. the client device can start sending requests the AR.Drone IP address and its services ports.

The client can also initiate the Wifi ad-hoc network. If the drone detects an already-existing
network with the SSID it intented to use, it joins the already-existing Wifi channel.

11

2.10 Communication services between the AR.Drone and a client
device

Controlling the AR.Drone is done through 3 main communication services.

Controlling and configuring the drone is done by sending AT commands on UDP port 5556.
The transmission latency of the control commands is critical to the user experience. Those
commands are to be sent on a regular basis (usually 30 times per second). The list of available
commands and their syntax is discussed in chapter 6.

Information about the drone (like its status, its position, speed, engine rotation speed, etc.),
called navdata, are sent by the drone to its client on UDP port 5554. These navdata also include
tags detection information that can be used to create augmented reality games. They are sent
approximatively 30 times per second.

A video stream is sent by the AR.Drone to the client device on port 5555. Images from this video
stream can be decoded using the codec included in this SDK. Its encoding format is discussed
in section 7.2.

A fourth communication channel, called control port, can be established on TCP port 5559 to
transfer critical data, by opposition to the other data that can be lost with no dangerous effect.
It is used to retrieve configuration data, and to acknowledge important information such as the
sending of configuration information.

3 AR.Drone SDK
Overview

This SDK allows you to easily write your own applications to remotely control the drone :

• from any personal computer with Wifi connectivity (Linux or Windows);
• from an Apple iPhone;
• (soon) from an Android mobile phone.

It also allows you, with a bit more effort, to remotely control the drone from any programmable
device with a Wifi network card and a TCP/UDP/IP stack - for devices which are not sup-
ported by Parrot, a complete description of the communication protocol used by the drone is
given in this document;

However, this SDK does NOT support :

• rewriting your own embedded software - no direct access to the drone hardware (sensors,
engines) is allowed.

3.1 Layered architecture

Here is an overview of the layered architecture of a host application built upon the AR.Drone
SDK.

13

14

openGL Wifi Touchpad Accelerometer Host hw

ARDrone
Library

Host hw/sw API host sw

Application
threads

ARDrone Control
Engine (only for iPhone) Threads

level

Application
level

Host application

Data streams AT cmds

3.2 The AR.Drone Library

The AR.Drone Library is currently provided as an open-source library with high level APIs to
access the drone.

Let’s review its content :

• SOFT : the drone-specific code, including :

– COMMON : header (.h) files describing the communication structures used by the
drone (make sure you pack the C structures when compiling them)

– Lib/ardrone_tool : a set of tools to easily manage the drone, like an AT command
sending loop and thread, a navdata receiving thread, a ready to use video pipeline,
and a ready to use main function

• VLIB : the video processing library. It contains the functions to receive and decode the
video stream

• VPSDK : a set of general purpose libraries, including

– VPSTAGES : video processing pieces, which you can assemble to build a video
processing pipeline

– VPOS : multiplatform (Linux/Windows/Parrot proprietary platforms) wrappers
for system-level functions (memory allocation, thread management, etc.)

– VPCOM : multiplatform wrappers for communication functions (over Wifi, Blue-
tooth, etc.)

– VPAPI : helpers to manage video pipelines and threads

15

Let’s now detail the ARDroneTool part :

• ardrone_tool.c : contains a ready-to-use main C function which initialises the Wifi net-
work and initiates all the communications with the drone

• UI : contains a ready-to-use gamepad management code

• AT : contains all the functions you can call to actually control the drone. Most of them
directly refer to an AT command which is then automatically built with the right syntax
and sequencing number, and forwarded to the AT management thread.

• NAVDATA : contains a ready-to-use Navdata receiving and decoding system

3.3 The AR.Drone Tool

Part of the AR.Drone Library is the ARDroneTool .

The ARDroneTool is a library which implements in an efficient way the four services described
in section 2.10.

In particular, it provides :

• an AT command management thread, which collects commands sent by all the other
threads, and send them in an ordered manner with correct sequence numbers

• a navdata management thread which automatically receives the navdata stream, decodes
it, and provides the client application with ready-to-use navigation data through a call-
back function

• a video management thread, which automatically receives the video stream and provides
the client application with ready-to-use video data through a callback function

• a control thread which handles requests from other threads for sending reliable commands
from the drone, and automatically checks for the drone acknowledgements.

All those threads take care of connecting to the drone at their creation, and do so by using the
vp_com library which takes charge of reconnecting to the drone when necessary.

These threads, and the required initialization, are created and managed by a main function, also
provided by the ARDroneTool in the ardrone_tool.c file.

All a programmer has to do is then fill the desired callback functions with some application
specific code. Navdata can be processed as described in section 5.3. The video frames can be
retrived as mentionned in 5.6.

16

3.4 The AR.Drone Control Engine - only for Apple iPhone

The AR.Drone control engine (aka. ARDrone engine) provides all the AR.Drone applications
for iPhonewith common methods for managing the drone, displaying its video stream and
managing touch/tilt controls and special events on the iPhone.

It is meant to be a common base for all iPhone applications, in order to provide a common
drone API and user interface (common controls, setting menus, etc.). The Control Engine API
is the only interface to the drone from the iPhone application. It is the Control Engine task to
acces the ARDroneLIB .

The AR.Drone Control Engine automatically opens, receives, decodes and displays video stream
coming from toy using OpenGL routines. Only one AR Drone Control Engine function need
be called inside application for displaying automatically the incoming video stream. Another
function allows getting a status of this process.

The following flight parameters are superimposed on video:

• AR Drone battery life will be displayed on top right

The following controls are superimposed on video:

• At the bottom, a take-off button when landed or a landing button when flying
• On the left, a settings button and a zap (change video channel) button
• On the top, an emergency button, which will stop the AR.Drone motors

Special events can occur when in game, and trigger warning messages :

• battery too low
• wifi connection loss
• video connection loss
• engine problem

User can be requested to acknowledge special event message on touch pad.

4 ARDroneLIB and
ARDroneTool functions

Here are discussed the functions provided by the ARDroneLIB to manage and control the
drone.

Important
Those functions are meant to be used along with the whole ARDroneLIB and ARDroneTool
framework.

You can use them when building your own application as described in chapter 5 or when
modifying the examples.

They cannot be used when writing an application from scratch; you will then have to reim-
plement your own framework by following the specifications of the AT commands (chapter 6),
navigation data (section 7.1), and video stream (section 7.2).

Most of them are declared in file ardrone_api.h of the SDK.

4.1 Drone control functions

ardrone_tool_set_ui_pad_start

Summary : Take off - Land

Corresponding AT command : AT*REF

Args : (int value : take off flag)

Description :
Makes the drone take-off (if value=1) or land (if value=0).
When entering an emergency mode, the client program should call this function with a zero
argument to prevent the drone from taking-off once the emergency has finished.

17

18

ardrone_tool_set_ui_pad_select

Summary : Send emergency signal / recover from emergency

Corresponding AT command : AT*REF

Args : (int value : emergency flag)

Description :
When the drone is in a normal flying or ready-to-fly state, use this command with value=1 to
start sending an emergency signal to the drone, i.e. make it stop its engines and fall.

When the drone is in an emergency state, use this command with value=1 to make the drone
try to resume to a normal state.

Once you sent the emergency signal, you must check the drone state in the navdata and wait
until its state is actually changed. You can then call this command with value=0 to stop sending
the emergency signal.

ardrone_at_set_progress_cmd

Summary : Moves the drone

Corresponding AT command : AT*PCMD

Args : (

int flags : Flag enabling the use of progressive commands and the new Com-
bined Yaw control mode

float phi : Left/right angle ∈ [−1.0;+1.0]
float theta : Front/back angle ∈ [−1.0;+1.0]
float gaz : Vertical speed ∈ [−1.0;+1.0]
float yaw : Angular speed ∈ [−1.0;+1.0]

)

Description :
This function makes the drone move in the air. It has no effect when the drone lies on the
ground.

The drone is controlled by giving as a command a set of four parameters :

• a left/right bending angle, with 0 being the horizontal plane, and negative values bend-
ing leftward

• a front/back bending angle, with 0 being the horizontal plane, and negative values bend-
ing frontward

• a vertical speed
• an angular speed around the yaw-axis

In order to allow the user to choose between smooth or dynamic moves, the arguments of
this function are not directly the control parameters values, but a percentage of the maximum
corresponding values as set in the drone parameters. All parameters must thus be floating-
point values between −1.0 and 1.0.

19

The flags argument is a bitfiels containing the following informations :

• Bit 0 : when Bit0=0 the drone will enter the hovering mode, i.e. try to stay on top of a fixed
point on the ground, else it will follow the commands set as parameters.

• Bit 1 : when Bit1=1 AND CONTROL:control_level configuration Bit1=1, the new Com-
bined Yaw mode is activated. This mode includes a complex hybridation of the phi pa-
rameter to generate complete turns (phi+yaw).

4.2 Drone configuration functions

Before recieving the navdata, your application must set the GENERAL:navdata_demo config-
uration on the AR.Drone . This can be done using the following functions, or directly by calling
the ARDRONE_TOOL_CONFIGURATION_ADDEVENT macro.

ardrone_at_navdata_demo

Summary : Makes the drone send a limited amount of navigation data

Corresponding AT command : AT*CONFIG

[This function does not take any parameter.

Description :
Some navigation data are used for debugging purpose and are not useful for every day flights.
You can choose to receive only the most useful ones by calling this function. This saves some
network bandwidth. Most demonstration programs in the SDK (including the iPhone FreeFlight
application) use this restricted set of data. Ardrone Navigation uses the whole set of data.

Note : You must call this function or ardrone_at_set_navdata_all to make the drone start send-
ing any navdata.

ardrone_at_set_navdata_all

Summary : Makes the drone send all the navigation data

Corresponding AT command : AT*CONFIG

[This function does not take any parameter.

Description :
Some navigation data are used for debugging purpose and are not useful for every day flights.
You can choose to receive all the available navdata by calling this function. This used some
more network bandwidth.

Note : You must call this function or ardrone_at_navdata_demo to make the drone start send-
ing any navdata.

5 Creating an application
with ARDroneTool

The ARDroneTool library includes all the code needed to start your application. All you have
to do is writing your application specific code, and compile it along with the ARDroneLIB
library to get a fully functional drone client application which will connect to the drone and
start interacting with it.

This chapter shows you how to quickly get a customized application that suits your needs.

You can try to immediately start customizing your own application by reading section 5.1, but
it is recommended you read the whole chapter to understand what is going on inside.

5.1 Quick steps to create a custom AR.Drone application

The fastest way to get an up and running application is to copy the SDK Demo application
folder and bring the following modifications to suit your needs :

• customize the demo_navdata_client_process function to react to navigation information
reception (more details in 5.3)

• customize the output_gtk_stage_transform function to react to video frames reception
(more details in 5.6)

• customize the update_gamepad function to react to inputs on a game pad (more details
in 5.7)

• create a new thread and add it to the THREAD_TABLE structure to send commands in-
dependently from the above-mentioned events (more details in 5.5)

Customizing mainly means sending the appropriate commands from the ARDroneTool API.
Those commands are listed in chapter 4.

To compile your customized demo, please refer to the tutorials.

21

22

5.2 Customizing the client initialization

As is true for every C-based application, the initial entry point for every AR.Drone application
is a function called main. The good news is that, when you create a new application using the
ARDroneTool library, you do not have to write this function yourself.

The ARDroneTool library includes a version of this function with all the code needed to start
your application. All you have to do is writing your application specific code, and compile it
along with the ARDroneLIB library to get a fully functional drone client application.

Listing 5.1 shows the main function for the ARDrone application. It is located in the file
ardrone_tool.c and should not require any modification. Every application you create will
have a main function that is almost identical to this one.

This function performs the following tasks :

• Configures WIFI network.
• Initializes the communication ports (AT commands, Navdata, Video and Control).
• Calls the ardrone_tool_init_custom function. Its prototype is defined in ardrone_tool.h

file, and must be defined and customized by the developer (see example 5.2). In this
function we can find:

– the local initialization for your own application.

– the initialization of input devices, with the ardrone_tool_input_add function

– the starting off all threads except the navdata_update and ardrone_control that are
started by the main function.

• Starts the thread navdata_update that is located in ardrone_navdata_client.c file. To run
properly this routine, the user must declare a table ardrone_navdata_handler_table. List-
ing 3 shows how to declare an ardrone_navdata_handler table. The MACRO is located
in ardrone_navdata_client.h file.

• Starts the thread ardrone_control that is located in ardrone_control.c file. To send an event
you must use ardrone_control_send_event function declared in ardrone_control.h.

• Acknowledge the Drone to indicate that we are ready to receive the Navdata.
• At last call ardrone_tool_update function in loop. The application does not return from

this function until it quits. This function retrieves the device information to send to the
Drone. The user can declare ardrone_tool_update_custom function, that will be called by
the ardrone_tool_update function.

5.3 Using navigation data

During the application lifetime, the ARDroneTool library automatically calls a set of user-
defined callback functions every time some navdata arrive from the drone.

Declaring such a callback function is done by adding it to the NAVDATA_HANDLER_TABLE
table. In code example 5.3, a navdata_ihm_process function, written by the user, is declared.

Note : the callback function prototype must be the one used in code example 5.3.

23

Listing 5.1: Application initialization with ARDroneLIB

int main(int argc, char *argv[])
{

...
ardrone_tool__setup__com(NULL);
ardrone_tool_init(argc, argv);
while(SUCCEED(res) && ardrone_tool_exit() == FALSE)
{

res = ardrone_tool_update();
}
res = ardrone_tool_shutdown();

}

Listing 5.2: Custom application initialization example

C_RESULT ardrone_tool_init_custom(int argc, char **argv)
{
gtk_init(&argc, &argv);
/// Init specific code for application
ardrone_navdata_handler_table[NAVDATA_IHM_PROCESS_INDEX].data = &cfg;
// Add inputs
ardrone_tool_input_add(&gamepad);
// Sample run thread with ARDrone API.
START_THREAD(ihm, &cfg);
return C_OK;
}

Listing 5.3: Declare a navdata management function

BEGIN_NAVDATA_HANDLER_TABLE //Mandatory
NAVDATA_HANDLER_TABLE_ENTRY(navdata_ihm_init, navdata_ihm_process,

navdata_ihm_release,
NULL)
END_NAVDATA_HANDLER_TABLE //Mandatory
//Definition for init, process and release functions.
C_RESULT navdata_ihm_init(mobile_config_t* cfg)
{.
..
}
C_RESULT navdata_ihm_process(const navdata_unpacked_t* const pnd)
{.
..
}
C_RESULT navdata_ihm_release(void)
{
}

24

Listing 5.4: Example of navdata management function

/* Receving navdata during the event loop */
inline C_RESULT demo_navdata_client_process(const navdata_unpacked_t* const

navdata)
{

const navdata_demo_t* const nd = &navdata->navdata_demo;

printf("Navdata for flight demonstrations\n");

printf("Control state : %s\n",ctrl_state_str(nd->ctrl_state));
printf("Battery level : %i/100\n",nd->vbat_flying_percentage);
printf("Orientation : [Theta] %f [Phi] %f [Psi] %f\n",nd->theta,nd->phi,nd

->psi);
printf("Altitude : %i\n",nd->altitude);
printf("Speed : [vX] %f [vY] %f\n",nd->vx,nd->vy);

printf("\033[6A"); // Ansi escape code to go up 6 lines

return C_OK;
}

5.4 Command line parsing for a particular application

The user can implement functions to add arguments to the default command line. Functions
are defined in <ardrone_tool/ardrone_tool.h> file :

• ardrone_tool_display_cmd_line_custom (Not mandatory): Displays help for particular
commands.

• ardrone_tool_check_argc_custom (Not mandatory) : Checks the number of arguments.
• ardrone_tool_parse_cmd_line_custom (Not mandatory): Checks a particular line com-

mand.

5.5 Thread management in the application

In the preceding section, we showed how the ARDrone application was initialized and how
it manages the Navdata and control events. In addition to those aspects of the application
creation, there are also smaller details that need to be considered before building a final appli-
cation.

It’s the responsibility of the user to manage the threads. To do so, we must declare a thread
table with MACRO defined in vp_api_thread_helper.h file. Listing 5.5 shows how to declare a
threads table.

The threads navdata_update and ardrone_control do not need to be launched and released;
this is done by the ARDroneMain for all other threads, you must use the MACRO named
START_THREAD and JOIN_THREAD.

25

In the preceding sections, we have seen that the user must declare functions and tables
(ardrone_tool_init_custom, ardrone_tool_update_custom, ardrone_navdata_handler_table and
threads table), other objects can be defined by the user but it is not mandatory :

• adrone_tool_exit function, which should return true to exit the main loop
• ardrone_tool_shutdown function where you can release the resources. These functions

are defined in
• ardrone_tool.h.

Listing 5.5: Declaration of a threads table

BEGIN_THREAD_TABLE //Mandatory
THREAD_TABLE_ENTRY(ihm, 20) // For your own application
THREAD_TABLE_ENTRY(navdata_update, 20) //Mandatory
THREAD_TABLE_ENTRY(ardrone_control, 20) //Mandatory
END_THREAD_TABLE //Mandatory

5.6 Managing the video stream

This SDK includes methods to manage the video stream. The whole process is managed by
a video pipeline, built as a sequence of stages which perform basic steps, such as receiving the
video data from a socket, decoding the frames, and displaying them.

It is strongly recommended to have a look at the video_stage.c file in the code examples to
see how this works, and to modify it to suit your needs. In the examples a fully functionnal
pipeline is already created, and you will probably just want to modify the displaying part.

A stage is embedded in a structure named vp_api_io_stage_t that is defined in the file
<VP_Api/vp_api.h>.

Definition of the structure of a stage:

Listing 5.7 shows how to build a pipeline with stages. In this sample a socket is opened and
the video stream is retrieved.

Listing 5.8 shows how to run the pipeline. This code must be implemented by the user; a
sample is provided in the SDK Demo program. For example, you can use a thread dedicated
to this.

Functions are defined in <VP_Api/vp_api.h> file : vp_api_open : Initialization of all the stages
embedded in the pipeline. vp_api_run : Running of all the stages, in loop. vp_api_close : Close
of all the stages.

26

Listing 5.6: The video pipeline

typedef struct _vp_api_io_stage_
{
//Enum corresponding to the type of stage available, include in file <VP_Api/

vp_api.h>.
//Only used for Debug.
VP_API_IO_TYPE type;
//Specific data to the current stage. Definitions are given in include files <

VP_Stages/*> .
void *cfg;
//Structure {vp_api_stage_funcs} is included in <VP_Api/vp_api_stage.h> with the

definition of stages.
Stages are included also in the directory Soft/Lib/ardrone_tool/Video.
vp_api_stage_funcs_t funcs;
/ /This structure is included in the file <VP_Api/vp_api.h> and is shared between

all stages. It contains video
buffers and information on decoding the video.
vp_api_io_data_t data;
} vp_api_io_stage_t;
Definition of the structure of a pipeline:
The structure is included in file <VP_Api/vp_api.h> :
typedef struct _vp_api_io_pipeline_
{
//Number of stage to added in the pipeline.

uint32_t nb_stages;
//Address to the first stage.
vp_api_io_stage_t *stages;
//Must equal to NULL
vp_api_handle_msg_t handle_msg;
//Must equal to 0.
uint32_t nb_still_running;
//Must equal to NULL.
vp_api_fifo_t fifo;
} vp_api_io_pipeline_t;

5.7 Adding control devices

The ARDroneTool and demonstration programs come with an example of how to use a gamepad
to pilot the drone.

The gamepad.c[pp] files in the example contain the code necessary to detect the presence of a
gamepad, poll its status and send corresponding commands.

To add a control device and make ARDroneTool consider it, you must write :

• an initialization function, that ARDroneTool will call once when initializing the applica-
tion. The provided example scans the system and searches a known gamepad by looking
for its USB Vendor ID and Product ID.

• an update function, that ARDroneTool will systatically call every 20ms during the appli-
cation lifetime, unless the initialization fails

• a clean up function, that ARDroneTool calls once at the end of the application

27

Listing 5.7: Building a video pipeline

#include <VP_Api/vp_api.h>
#include <VP_Api/vp_api_error.h>
#include <VP_Api/vp_api_stage.h>
#include <ardrone_tool/Video/video_com_stage.h>
#include <ardrone_tool/Com/config_com.h>
vp_api_io_pipeline_t pipeline;
vp_api_io_data_t out;
vp_api_io_stage_t stages[NB_STAGES];
video_com_config_t icc;
icc.com = COM_VIDEO();
icc.buffer_size = 100000;
icc.protocol = VP_COM_UDP;
COM_CONFIG_SOCKET_VIDEO(&icc.socket, VP_COM_CLIENT, VIDEO_PORT, wifi_ardrone_ip);
pipeline.nb_stages = 0;
stages[pipeline.nb_stages].type = VP_API_INPUT_SOCKET;
stages[pipeline.nb_stages].cfg = (void *)&icc;
stages[pipeline.nb_stages].funcs = video_com_funcs;
pipeline.nb_stages++;

Listing 5.8: Running a video pipeline

res = vp_api_open(&pipeline, &pipeline_handle);
if(SUCCEED(res))
{
int loop = SUCCESS;
out.status = VP_API_STATUS_PROCESSING;
while(loop == SUCCESS)
{
if(SUCCEED(vp_api_run(&pipeline, &out)))
{
if((out.status == VP_API_STATUS_PROCESSING || out.status ==
VP_API_STATUS_STILL_RUNNING))
{
loop = SUCCESS;
}
}
else loop = -1; // Finish this thread
}
vp_api_close(&pipeline, &pipeline_handle);
}

28

Once these functions are written, you must register your to ARDroneTool by using ardrone_tool_input_add
function which takes a structure parameter input_device_t defined in <ardrone_tool/UI/ardrone_input.h>.
This structure holds the pointers to the three above-mentioned functions.

Structure input_device_t with fields :

Listing 5.9: Declaring an input device to ARDroneTool

struct _input_device_t {
char name[MAX_NAME_LENGTH];

C_RESULT (*init)(void);
C_RESULT (*update)(void);
C_RESULT (*shutdown)(void);

} input_device_t;

The update function will typically call the following functions depending on the buttons pressed
by the user :

• ardrone_tool_set_ui_pad_start : Takeoff / Landing button
• ardrone_tool_set_ui_pad_select : emergency reset all button
• ardrone_at_set_progress_cmd : directional buttons or sticks

Note : In SDKs newer than 1.0.4, the following functions are deprecated, and are all replaced
by the ardrone_at_set_progress_cmd command :

• ardrone_tool_set_ui_pad_ad : turn right button
• ardrone_tool_set_ui_pad_ag : turn left button
• ardrone_tool_set_ui_pad_ab : go down button
• ardrone_tool_set_ui_pad_ah : go up button
• ardrone_tool_set_ui_pad_l1 : go left button
• ardrone_tool_set_ui_pad_r1 : go right button
• ardrone_tool_set_ui_pad_xy : go forward/backward buttons (2 arguments)

6 AT Commands

AT commands are text strings sent to the drone to control its actions.

Those strings are generated by the ARDroneLib and ARDroneTool libraries, provided in the
SDK. Most developers should not have to deal with them. Advanced developers who would
like to rewrite their own A.R.Drone middle ware can nevertheless send directly those com-
mands to the drone inside UDP packets on port UDP-5556, from their local UDP-port 5556
(using the same port numbers on both sides of the UDP/IP link is a requirement in the current
SDK).

Note : According to tests, a satisfying control of the AR.Drone is reached by sending the AT-
commands every 30 ms for smooth drone movements. To prevent the drone from considering
the WIFI connection as lost, two consecutive commands must be sent within less than 2 sec-
onds.

29

30

6.1 AT Commands syntax

Strings are encoded as 8-bit ASCII characters, with a Line Feed character (byte value 10(10)),
noted <LF>hereafter, as a newline delimiter.

One command consists in the three characters AT* (i.e. three 8-bit words with values 41(16),54(16),2a(16))
followed by a command name, and equal sign, a sequence number, and optionally a list of
comma-separated arguments whose meaning depends on the command.

A single UDP packet can contain one or more commands, separated by newlines (byte value
0A(16)). An AT command must reside in a single UDP packet. Splitting an AT command in two
or more UDP packets is not possible.

Example :

AT*PCMD=21625,1,0,0,0,0<LF>AT*REF=21626,290717696<LF>

The maximum length of the total command cannot exceed 1024 characters; otherwise the entire
command line is rejected. This limit is hard coded in the drone software.

Note : Incorrect AT commands should be ignored by the drone. Nevertheless, the client should
always make sure it sends correctly formed UDP packets.

Most commands will accept arguments, which can be of three different type :

• A signed integer, stored in the command string with a decimal representation (ex: the
sequence number)

• A string value stored between double quotes (ex: the arguments of AT*CONFIG)

• A single-precision IEEE-754 floating-point value (aka. float). Those are never directly
stored in the command string. Instead, the 32-bit word containing the float will be con-
sidered as a 32-bit signed integer and printed in the AT command (an example is given
below).

6.2 Commands sequencing

In order to avoid the drone from processing old commands, a sequence number is associated
to each sent AT command, and is stored as the first number after the "equal" sign. The drone
will not execute any command whose sequence number is less than the last valid received AT-
Command sequence number. This sequence number is reset to 1 inside the drone every time
a client disconnects from the AT-Command UDP port (currently this disconnection is done by
not sending any command during more than 2 seconds), and when a command is received
with a sequence number set to 1.

A client MUST thus respect the following rule in order to successfully execute commands on
the drone :

31

• Always send 1 as the sequence number of the first sent command.

• Always send commands with an increasing sequence number. If several software threads
send commands to the drone, generating the sequence number and sending UDP packets
should be done by a single dedicated function protected by a mutual exclusion mecha-
nism.

Note : Drones with SDK version 0.3.1 (prior to May 2010) had a different and incompatible
sequencing system which used the AT*SEQ command. These must be considered deprecated.

6.3 Floating-point parameters

Let’s see an example of using a float argument and consider that a progressive command is to
be sent with an argument of −0.8 for the pitch. The number −0.8 is stored in memory as a 32-
bit word whose value is BF4CCCCD(16), according to the IEEE-754 format. This 32-bit word
can be considered as holding the 32-bit integer value −1085485875(10). So the command to send
will be AT*PCMD=xx,xx,−1085485875,xx,xx.

Listing 6.1: Example of AT command with floating-point arguments

assert(sizeof(int)==sizeof(float));
sprintf(my_buffer,"AT*PCMD,%d,%d,%d,%d,%d\r",

sequence_number,

(int)(&my_floating_point_variable_1),

(int)(&my_floating_point_variable_2),

(int)(&my_floating_point_variable_3),

(int)(&my_floating_point_variable_4));

The ARDroneLIB provides a C union to ease this conversion. You can use the _float_or_int_t
to store a float or an int in the same memory space, and use it as any of the two types.

6.4 Deprecated commands

The following commands might have existed in old version of SDKs, and are not supported
any more. They should thus NOT be used.

Deprecated commands: AT*SEQ, AT*RADGP, AT*MTRIM

32

6.5 AT Commands summary

AT command Arguments1 Description
AT*REF input Takeoff/Landing/Emergency stop command
AT*PCMD flag, roll, pitch,

gaz, yaw
Move the drone

AT*FTRIM - Sets the reference for the horizontal plane
AT*CONFIG key, value Configuration of the AR.Drone
AT*LED animation, fre-

quency, duration
Set a led animation on the AR.Drone

AT*ANIM animation, dura-
tion

Set a flight animation on the AR.Drone

AT*COMWDG - Reset the communication watchdog

1apart from the sequence number

33

6.6 Commands description

AT*REF
Summary : Controls the basic behaviour of the drone (take-off/landing, emergency

stop/reset)

Corresponding API function : ardrone_tool_set_ui_pad_start
Corresponding API function : ardrone_tool_set_ui_pad_select

Syntax : AT*REF=%d,%d<LF>

Argument 1 : the sequence number
Argument 2 : an integer value in [0..232 − 1], representing a 32 bit-wide bit-field

controlling the drone.

Description :
Send this command to control the basic behaviour of the drone. With SDK version 1.5, only
bits 8 and 9 are used in the control bit-field. Bits 18, 20, 22, 24 and 28 should be set to 1. Other
bits should be set to 0.

Bits 31 .. 10 9 8 7 .. 0
Usage Do not use Takeoff/Land Emergency Do not use

(aka. "start bit") (aka. "select bit")

Bit 9 usages :

Send a command with this bit set to 1 to make the drone take-off. This command
should be repeated until the drone state in the navdata shows that drone actually
took off. If no other command is supplied, the drone enters a hovering mode and
stays still at approximately 1 meter above ground.
Send a command with this bit set to 0 to make the drone land. This command should
be repeated until the drone state in the navdata shows that drone actually landed,
and should be sent as a safety whenever an abnormal situation is detected.
After the first start AT-Command, the drone is in the taking-Off state, but still accepts
other commands. It means that while the drone is rising in the air to the "1-meter-
high-hovering state", the user can send orders to move or rotate it.

Bit 8 usages :

When the drone is a "normal" state (flying or waiting on the ground), sending a com-
mand with this bit set to 1 (ie. sending an "emergency order") makes the drone enter
an emergency mode. Engines are cut-off no matter the drone state. (ie. the drone
crashes, potentially violently).
When the drone is in an emergency mode (following a previous emergency order
or a crash), sending a command with this bit set to 1 (ie. sending an "emergency
order") makes the drone resume to a normal state (allowing it to take-off again), at
the condition the cause of the emergency was solved.
Send an AT*REF command with this bit set to 0 to make the drone consider following
"emergency orders" commands (this prevents consecutive "emergency orders" from
flip-flopping the drone state between emergency and normal states).

34

Note :
The names "start" and "select" come from previous versions of the SDK when take-off and
landing were directly managed by pressing the select and start buttons of a game pad.

Example :
The following commands sent in a standalone UDP packet will send an emergency signal :

AT*REF=1,290717696<LF>AT*REF=2,290717952<LF>AT*REF=3,290717696<LF>

35

AT*PCMD
Summary : Send progressive commands - makes the drone move (translate/rotate).

Corresponding API function : ardrone_at_set_progress_cmd

Syntax : AT*PCMD=%d,%d,%d,%d,%d,%d<LF>

Argument 1 : the sequence number
Argument 2 : flag enabling the use of progressive commands and/or the Com-

bined Yaw mode (bitfield)
Argument 3 : drone left-right tilt - floating-point value in range [−1..1]
Argument 4 : drone front-back tilt - floating-point value in range [−1..1]
Argument 5 : drone vertical speed - floating-point value in range [−1..1]
Argument 6 : drone angular speed - floating-point value in range [−1..1]

Description :
This command controls the drone flight motions.

Always set the flag (argument 2) bit zero to one to make the drone consider the other argu-
ments. Setting it to zero makes the drone enter hovering mode (staying on top of the same point
on the ground).

Bits 31 .. 2 1 0
Usage Do not use Combined yaw Progressive commands

enable enable

The left-right tilt (aka. "drone roll" or phi angle) argument is a percentage of the maximum
inclination as configured here. A negative value makes the drone tilt to its left, thus flying
leftward. A positive value makes the drone tilt to its right, thus flying rightward.

The front-back tilt (aka. "drone pitch" or theta angle) argument is a percentage of the maximum
inclination as configured here. A negative value makes the drone lower its nose, thus flying
frontward. A positive value makes the drone raise its nose, thus flying backward.

The drone translation speed in the horizontal plane depends on the environment and cannot
be determined. With roll or pitch values set to 0, the drone will stay horizontal but continue
sliding in the air because of its inertia. Only the air resistance will then make it stop.

The vertical speed (aka. "gaz") argument is a percentage of the maximum vertical speed as
defined here. A positive value makes the drone rise in the air. A negative value makes it go
down.

The angular speed argument is a percentage of the maximum angular speed as defined here.
A positive value makes the drone spin right; a negative value makes it spin left.

36

AT*FTRIM

Summary : Flat trims - Tells the drone it is lying horizontally

Corresponding API function : ardrone_at_set_flat_trim

Syntax : AT*FTRIM=%d,<LF>

Argument 1 : the sequence number

Description :
This command sets a reference of the horizontal plane for the drone internal control system.

It must be called after each drone start up, while making sure the drone actually sits on a
horizontal ground. Not doing so before taking-off will result in the drone not being able to
stabilize itself when flying, as it would not be able to know its actual tilt.

When receiving this command, the drone will automatically adjust the trim on pitch and roll
controls.

http://en.wikipedia.org/wiki/Trim_tab

37

AT*CONFIG
Summary : Sets an configurable option on the drone

Corresponding API function : ardrone_at_set_toy_configuration

Syntax : AT*CONFIG=%d,%s,%s<LF>

Argument 1 : the sequence number
Argument 2 : the name of the option to set, between double quotes (byte with

hex.value 22h)
Argument 3 : the option value, between double quotes

Description :
Most options that can be configured are set using this command. The list of configuration
options can be found in chapter 8.

AT*COMWDG

Summary : reset communication watchdog

38

AT*LED

Summary : Sets the drone control loop PID coefficients

Corresponding API function : ardrone_at_set_led_animation

Syntax : AT*LED=%d,%d,%d,%d<LF>

Argument 1 : the sequence number
Argument 2 : integer - animation to play
Argument 3 : float - frequence in Hz of the animation
Argument 4 : integer - total duration in seconds of the animation (animation is

played (duration×frequence times)

Description :
This command makes the four motors leds blink with a predetermined sequence. The leds
cannot be freely controlled by the user.

See the API function description to get the list of the available animations.

Note : The frequency parameter is a floating point number, as previously explained.

AT*ANIM

Summary : Makes the drone execute a predefined movement (called animation).

Corresponding API function : ardrone_at_set_anim

Syntax : AT*ANIM=%d,%d,%d<LF>

Argument 1 : the sequence number
Argument 2 : integer - animation to play
Argument 3 : integer - total duration in seconds of the animation

Description :
Plays an animation, ie. a predetermined sequence of movements. Most of these movements
are small movements (shaking for example) superposed to the user commands.

See the API function description to get the list of the available animations.

7 Incoming data streams

The drone provides its clients with two main data streams : the navigation data (aka. navdata)
stream, and the video stream.

This chapter explains their format. This is useful for developers writing their own middleware.
Developers using ARDroneTool can skip this part and directly access these data from the
callback function triggered by ARDroneTool when receiving incoming data from the drone
(see 5.3 and ??).

7.1 Navigation data

The navigation data (or navdata) is are a mean given to a client application to receive periodi-
cally (< 5ms) information on the drone status (angles, altitude, camera, velocity, tag detection
results ...).

This section shows how to retrieve them and decode them. Do not hesitate to use network
traffic analysers like Wireshark to see how they look like.

7.1.1 Navigation data stream

The navdata are sent by the drone from and to the UDP port 5554. Information are stored is a
binary format and consist in several sections blocks of data called options.

Each option consists in a header (2 bytes) identifying the kind of information contained in it,
a 16-bit integer storing the size of the block, and several information stored as 32-bit integers,
32-bit single precision floating-point numbers, or arrays. All those data are stored with little-
endianess.

Header Drone Sequence Vision Option 1 . . . Checksum block
0x55667788 state number flag id size data . . . cks id size cks data
32-bit 32-bit 32-bit 32-bit 16-bit 16-bit 16-bit 16-bit 32-bit
int. int. int. int. int. int. int. int. int.

39

40

All the blocks share this common structure :

Listing 7.1: Navdata option structure

typedef struct _navdata_option_t {
uint16_t tag; /* Tag for a specific option */
uint16_t size; /* Length of the struct */
uint8_t data[]; /* Structure complete with the special tag */
} navdata_option_t;

The most important options are navdata_demo_t, navdata_cks_t, navdata_host_angles_t and
navdata_vision_detect_t. Their content can be found in the C structure, mainly in the navdata_common.h.

7.1.2 Initiating the reception of Navigation data

To receive Navdata, you must send a packet of some bytes on the port NAVDATA_PORT of host.

Two cases :

• the drone starts in bootstrap mode, only the status and the sequence counter are sent.

• the Drone is always started, Navdata demo are send.

To exit BOOTSTRAP mode, the client must send an AT command in order to modify configura-
tion on the Drone. Send AT command: "AT*CONFIG=\"general:navdata_demo\",\"TRUE\"\\r".
Ack control command, send AT command: "AT*CTRL=0. The drone is now initialized and
sends Navdata demo. This mechanism is summarized by figure 7.1.

How do the client and the drone synchronize ?

The client application can verify that the sequence counter contained in the header structure of
NavData is growing.

There are two cases when the local (client side) sequence counter should be reset :

• the drone does not receive any traffic for more that 50ms; it will then set its ARDRONE_COM_WATCHDOG_MASK
bit in the ardrone_state field (2nd field) of the navdata packet. To exit this mode, the client
must send the AT Command AT*COMWDG.

• The drone does not receive any traffic for more than 2000ms; it will then stop all com-
munication with the client, and internally set the ARDRONE_COM_LOST_MASK bit in its state
variable. The client must then reinitialize the network communication with the drone.

41

24 (54)

Prepared Title
Stéphane Piskorski A.R. Drone Developer Guide
Approved Date Revisio

n
File

M. Lefébure 26/07/2010 4.0 AR_Drone_Developer_Guide_Release_4.0_proposal.doc

Mechanism to receive NavData demo:

How does sync with the host ?
Verify that the sequence counter contained in the header structure of NavData is growing.
You must reset the local sequence counter for two reasons :

- - The host does not receive more traffic> 50ms in this case it falls into a state
AR_DRONE_COM_WATCHDOG_MASK. To exit this mode, the client must send the AT
Command AT*COMWDG .

- The host does not receive more traffic> 2000ms, in this case it falls into a state
AR_DRONE_COM_LOST_MASK. To exit this mode, the client will again initialize com with
the host.

How to check the integrity of NavData?
Compute a checksum of data and compare them with the value contained in the structure [navdata_cks_t] is
the last option in the packet.

HOST CLIENT

Send AT command ("AT*CONFIG=\"general:navdata_demo\",\"TRUE\"\r")

PROCESS
BOOTSTRAP

Send status to NAVDATA_PORT with
AR_DRONE_COMMAND_MASK = TRUE

PROCESS AT
command

Send AT command (ACK_CONTROL_MODE)

Exit BOOTSTRAP mode
and switch in Navdata
demo mode.

Sending continuous navdata demo

Ready to
process next
command

Send one packet to NAVDATA_PORT
Init navdata
with ip client

Send at least the status to NAVDATA_PORT
Check status bit
mask is activated:
AR_DRONE_NAVDATA
_BOOTSTRAP

Figure 7.1: Navdata stream initiation

How to check the integrity of NavData ?

Compute a checksum of data and compare them with the value contained in the structure
[navdata_cks_t]. The checksum is always the last option (data block) in the navdata packet.

Note : this checksum is already computed by ARDroneLIB .

42

7.1.3 Augmented reality data stream

In the previously described NavData, there are informations about vision-detected tags. The
goal is to permit to the host to add some functionalities, like augmented reality features. The
principle is that the AR.Drone sends informations on recognized pre-defined tags, like type
and position.

Listing 7.2: Navdata option for vision detection

typedef struct _navdata_vision_detect_t {
uint16_t tag;
uint16_t size;
uint32_t nb_detected;
uint32_t type[4];
uint32_t xc[4];
uint32_t yc[4];
uint32_t width[4];
uint32_t height[4];
uint32_t dist[4];
} __attribute__ ((packed)) navdata_vision_detect_t;

The drone can detect up to four 2D-tags. The kind of detected tag, and which camera to use,
can be set by using the configuration parameter detect_type.

Let’s detail the values in this block :

• nb_detected: number of detected 2D-tags.
• type[i]: Type of the detected tag #i ; see the CAD_TYPE enumeration.
• xc[i], yc[i]: X and Y coordinates of detected 2D-tag #i inside the picture, with (0, 0) being

the top-left corner, and (1000, 1000) the right-bottom corner regardless the picture resolu-
tion or the source camera.

• width[i], height[i]: Width and height of the detection bounding-box (2D-tag #i), when
applicable.

• dist[i]: Distance from camera to detected 2D-tag #i in centimeters, when applicable.

43

7.2 The video stream

The embedded system uses a proprietary video stream format, based on a simplified version of
the H.263 UVLC (Universal Variable Length Code) format (http://en.wikipedia.org/
wiki/H263). The images are encoded in the YCBCR color space format, 4:2:0 type (http:
//en.wikipedia.org/wiki/YCbCr), with 8 bits values. The proprietary format used by
the drone is described in 4.2.2, but here is firstly shown the way to produce it.

7.2.1 Image structure

An image is split in groups of blocks (GOB), which correspond to 16-lines-height parts of the
image, split as shown below :

GOB #0

GOB #1

GOB #2

GOB #3

GOB #4

GOB #5

GOB #6

GOB #7

Figure 7.2: Example image (source : http://en.wikipedia.org/wiki/YCbCr)

Each GOB is split in Macroblocks, which represents a 16x16 image.

 MBlock #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Each macroblock contains informations of a 16x16 image, in Y CBCR format, type 4:2:0.

(see http://en.wikipedia.org/wiki/YCbCr,
http://en.wikipedia.org/wiki/Chroma_subsampling,
http://www.ripp-it.com/glossaire/mot-420-146-lettre-tous-Categorie-toutes.
html)

http://en.wikipedia.org/wiki/H263
http://en.wikipedia.org/wiki/H263
http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/Chroma_subsampling
http://www.ripp-it.com/glossaire/mot-420-146-lettre-tous-Categorie-toutes.html
http://www.ripp-it.com/glossaire/mot-420-146-lettre-tous-Categorie-toutes.html

44

RGB image Y image CB image CR image

The 16x16 image is finally stored in the memory as 6 blocks of 8x8 values:

• 4 blocks (Y0, Y1, Y2 and Y3) to form the 16x16 pixels Y image of the luma component
(corresponding to a greyscale version of the original 16x16 RGB image).

• 2 blocks of down-sampled chroma components (computed from the original 16x16 RGB
image):

– Cb: blue-difference component (8x8 values)
– Cr: red-difference component (8x8 values)

Y0 Y1
Y2 Y3 CB CR

16

16

8

8

7.2.1.1 Layer of images

For each picture, data correspond to an image header followed by data blocks groups and an
ending code (EOS, end of sequence).

The composition of each block-layer is resumed here:

45

Block Y0
Complete description
of a 16x16 image block.
(cf.Erreur ! Source du
renvoi introuvable.)

Block Y1 Block Y2 Block Y3 Block CB Block CR

Data for block
(ZZZ bits)

MBDIFF
(2 bits)

MBDESC
(8 bits)

MBC
(1 bit)

MBlock 0 MBlock 1 MBlock N MBlock j

(cf.Erreur !
Source du
renvoi
introuvable.) OPTIONNAL (depends

on MBDESC)
OPTIONNAL

(depends on MBC)

Data for macroblocks
(YYY bits)

GOBQUANT
(5 bits)

GOBSC
(22 bits)

GBlock 0 GBlock 1 GBlock M GBlock i

(cf. Erreur !
Source du
renvoi
introuvable.
)

Each Group of Blocks
(GOB) correspond to a
line of Macroblocks

EOS
(22 bits)

Groups of blocks
(XXX bits)

PFRAME
(32 bits)

PQUANT
(5 bits)

PTYPE
(3 bits)

PRESOLUTION
(3 bits)

PFORMAT
(2 bits)

PSC
(22 bits)

7.2.1.2 Picture start code (PSC) (22 bits)

Like H.263 UVLC start with a PSC (Picture start code) which is 22 bits long:

0000 0000 0000 0000 1 00000

A PSC is always byte aligned.

7.2.1.3 Picture format (PFORMAT) (2 bits)

The second information is the picture format which can be one the following : CIF or VGA

• 00 : forbidden
• 01 : CIF
• 10 : VGA

46

7.2.1.4 Picture resolution (PRESOLUTION) (3 bits)

Picture resolution which is used in combination with the picture format (3 bits)

• 000 : forbidden
• 001 : for CIF it means sub-QCIF
• 010 : for CIF it means QCIF
• 011 : for CIF it means CIF
• 100 : for CIF it means 4-CIF
• 101 : for CIF it means 16-CIF

7.2.1.5 Picture type (PTYPE) (3 bits)

Picture type:

• 000 : INTRA picture
• 001 : INTER picture

7.2.1.6 Picture quantizer (PQUANT) (5 bits)

The PQUANT code is a 5-bits-long word. The quantizer reference for the picture that range
from 1 to 31.

7.2.1.7 Picture frame (PFRAME) (32 bits)

The frame number (32 bits).

47

7.2.1.8 Layer groups of blocks (GOBs)

Data for each group of blocks (GOB) consists of a header followed by data group corresponding
to the macroblock, according to the structure shown in Figure 10 and Figure 11. Each GOB
corresponds to one or more blockline (cf. Figure 6).

Note : For the first GOB of each picture, the GOB header is always omitted.

7.2.1.9 Group of block start code (GOBSC) (22 bits)

Each GOB starts with a GOBSC (Group of block start code) which is 22 bits long: 0000 0000
0000 0000 1xxx xx

A GOBSC is always a byte aligned. The least significant bytes represent the blockline number.
We can see that PSC means first GOB too. So for the first GOB, GOB header is always omitted.

7.2.1.10 Group of block quantizer (GOBQUANT) (5 bits)

The quantizer reference for the GOB that ranges from 1 to 31 (5 bits).

DEPRECATED

7.2.1.11 Layer of macroblocks

Data for each macroblock corresponding to an header of macroblock followed by data of mac-
roblock. The layer structure shown in Figure 10 and Figure 12:

MBC MBDESC MBDIFF Data for block
(1 bit) (8 bits) (2 bits) (cf. xxx)

Figure 12 - Layer structure of macroblocks

7.2.1.12 Coded macroblock bit (MBC) (1 bit)

Coded macroblock bit: Bit 0 : 1 means there is a macroblock / 0 means macroblock is all zero.

7.2.1.13 Macroblock description code (MBDESC) (8 bits)

Macroblock description code :

• Bit 0 : 1 means there is non dc coefficients for block y0.
• Bit 1 : 1 means there is non dc coefficients for block y1.
• Bit 2 : 1 means there is non dc coefficients for block y2.
• Bit 3 : 1 means there is non dc coefficients for block y3.

48

• Bit 4 : 1 means there is non dc coefficients for block cb.
• Bit 5 : 1 means there is non dc coefficients for block cr.
• Bit 6 : 1 means there is a quantization value following this code.
• Bit 7 : Always 1 to avoid a zero byte.

7.2.1.14 Macroblock differential (MBDIFF) (2 bits)

Macroblocks differential value for the quantization (2 bits):

• 00→ -1
• 01→ -2
• 10→ 1
• 11→ 2

7.2.1.15 Layer of blocks

As shown in Figure 9, a macroblock corresponds to four luminance ("luma") blocks and two
color ("chroma") blocks. Each of those 8x8 pixels blocks is computed by hardware with the
first steps of JPEG encoding (http://en.wikipedia.org/wiki/Jpeg). It concerns steps
"DCT", "Quantization", and "zig-zag ordering", but exclude data compression. This last step is
based on a proprietary format, detailed further below.

Note: The encoding of blocks made by hardware needs 16 bits values, so there is a "8?16 bits
values" conversion before the "pseudo" JPEG encoding.

8x8 image
block to
compute

Forward DCT 8x8 DCT
image block

QUANTIZATION

8x8
quantified

block

Zig-zag
ordering

-26; -3: 0; -3; -2;
-6; 2; -4; 1; -4; 1;
1; 5; 1; 2; -1; 1;
-1; 2; 0; 0; 0; 0;
0; -1; -1; EOB

ZZ-list of 16 bits
data, without the
last “0” values.

Entropy
encoding

Final stream
(compressed

data)

DC value
Proprietary

format

http://en.wikipedia.org/wiki/Jpeg

49

7.2.1.16 Specific block entropy-encoding

The proprietary format used to encode blocks is based on a mix of RLE and Huffman coding (cf.
http://en.wikipedia.org/wiki/Run-length_encoding and http://en.wikipedia.
org/wiki/Huffman_coding).

To resume, the RLE encoding is used to optimize the many zero values of the list, and the
Huffman encoding is used to optimize the non-zero values.

Below will be shown the pre-defined sets of codewords ("dictionaries"), for RLE and Huffman
coding. Then, the process description and an example.

Note: The first value of the list (the "DC value", cf. Figure 13) is not compressed, but 16 to 10
bits encoded.

Coarse Additionnal Size Value of run Range Length of run
1 1 0 0 1

0 1 2 1 1 1
0 0 1 x 4 (x) + 2 2 : 3 2

0 0 0 1 x x 6 (x x) +4 4 : 7 3
0 0 0 0 1 x x x 8 (x x x) +8 8 : 15 4

0 0 0 0 0 1 x x x x 10 (x x x x) +16 16 : 31 5
0 0 0 0 0 0 1 x x x x x 12 (x x x x x) +32 32 : 63 6

Coarse Additionnal Size Value of run Range Length of run
1 s 2 1 1

0 1 2 EOB
0 0 1 x s 5 (x) + 2 ±2 : 3 2

0 0 0 1 x x s 7 (x x) +4 ±4 : 7 3
0 0 0 0 1 x x x s 9 (x x x) +8 ±8 : 15 4

0 0 0 0 0 1 x x x x s 11 (x x x x) +16 ±16 : 31 5
0 0 0 0 0 0 1 x x x x x s 13 (x x x x x) +32 ±32 : 63 6
0 0 0 0 0 0 1 x x x x x s 15 (x x x x x x) +64 ±64 : 127 7

Note: s is the sign value (0 if datum is positive, 0 otherwise.)

7.2.2 Entropy-encoding process

Encoding principle :

The main principle to compress the values is to form a list of pairs of encoded-data. The first
datum indicates the number of successive zero values (from 0 to 63 times). The second one
corresponds to a non-zero Huffman-encoded value (from 1 to 127), with its sign.

Compression process :

The process to compress the "ZZ-list" (cf. Figure 13) in the output stream could be resumed in
few steps:

• Direct copy of the 10-significant bits of the first 16-bits datum ("DC value")

http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Huffman_coding

50

• Initialize the counter of successive zero-values at zero.

• For each of the remaining 16-bits values of the list:

– If the current value is zero:

* Increment the zero-counter

– Else:

* Encode the zero-counter value as explained below :
· Use the RLE dictionary (cf. Figure 14) to find the corresponding range of the

value (ex: 6 is in the 4 : 7 range).
· Subtract the low value of the range (ex: 6− 4 = 2)
· Set this temporary value in binary format (ex: 2(10) = 10(2))
· Get the corresponding "coarse" binary value (ex: 6(10) → 0001(2))
· Merge it with the temporary previously computed value (ex: 0001(2)+10(2) →
000110(2))

* Add this value to the output stream

* Set the zero-counter to zero

* Encode the non-zero value as explain below :
· Separate the value in temporary absolute part a, and sign part s. (s = 0 if

datum is positive, 1 otherwise). Ex: for d = −13→ a = 13 and s = 1.
· Use the Huffman dictionary (cf.Figure 15) to find the corresponding range

of a (ex: 13 is in the 8 : 15 range).
· Subtract the lower bound (ex : 13− 8 = 5)
· Set this temporary value in binary format (ex : 5(10) = 101(2))
· Get the corresponding coarse binary value (ex : 5→ 00001(2))
· Merge it with the temporary previously computed value, and the sign (ex :
00001(2) + 101(2) + 1(2) → 000011011(2))

* Add this value to the output stream

– Get to the next value of the list

• (End of "For")

7.2.3 Entropy-decoding process

The process to retrieve the "ZZ-list" from the compressed binary data is detailed here :

• Direct copy of the first 10 bits in a 16-bits datum ("DC value"), and add it to the output
list.

• While there remains compressed data (till the "EOB" code):

– Reading of the zero-counter value as explain below:

* Read the coarseS pattern part (bit-per-bit, till there is 1 value).

* On the corresponding line (cf.Figure 14), get the number of complementary bits
to read. (Ex: 000001(2) → xxxx→ 4 more bits to read.)

* If there is no 0 before the 1 (first case in the RLE table): ⇒ Resulting value (zero-
counter) is equal to 0.

51

* Else: ⇒ Resulting value (zero-counter) is equal to the direct decimal conversion
of the merged read binary values. Ex: if xxxx = 1101(2) → 000001(2) + 1101(2) =
0000011101(2) = 29(10)

– Add "0" to the output list, as many times indicated by the zero-counter.

– Reading of the non-zero value as explain below:

* Read the coarse pattern part (bit-per-bit, till there is 1 value).

* On the corresponding line (cf.Figure 15), get the number of complementary bits
to read. Ex: 0001(2) → xxs→ 2 more bits to read (then the sign bit.)

* If there is no 0 before the 1 (coarse pattern part = 1, in the first case of the Huffman
table): ⇒ Temporary value is equal to 1.

* Else if the coarse pattern part = 01(2) (second case of the Huffman table) : ⇒
Temporary value is equal to End Of Bloc code (EOB).

* Else⇒ Temporary value is equal to the direct decimal conversion of the merged
read binary values. Ex: if xx = 11 → 00001(2) + 11(2) = 0000111(2) = 7(10) Read
the next bit, to get the sign (s).

* If s = 0: ⇒ Resulting non-zero value = temporary value

* Else (s = 1): ⇒
* Resulting non-zero value = temporary value x (-1)

– Add the resulting non-zero value to the output list.

• (End of "while")

7.2.4 Example

Encoding :

• Initial data list :
-26; -3; 0; 0; 0; 0; 7; -5; EOB

• Step 1 :
-26; 0x"0"; -3; 4x"0"; 7; 0x"0"; -5; 0x"0"; EOB

• Step 2 (binary form):
1111111111100110; 1; 001 11; 0001 00; 0001 110; 1; 0001 011; 1; 01

• Final stream :
1111100110100111000100000111010001011101

Decoding :

• Initial bit-data stream :
{11110001110111000110001010010100001010001101}

• Step 1 (first 10 bits split) :
{1111000111}; {0111000110001010010100001010001101}

• Step 2 (16-bits conversion of DC value) :
{1111111111000111}; {0111000110001010010100001010001101}

52

• Step 3, remaining data (DC value is done) :
{"-57"}; {011100011000101001010001100110101}

• Step 4, first couple of values:
{"-57"}; [{01.}; {1.1}]; {00011000101001010001100110101}
{"-57"}; ["0"; "-1"]; {00011000101001010001100110101}

• Step 5, second couple of values :
{"-57"; "0"; "-1"; [{0001.10}; {001.01}]; {001010001100110101}
{"-57"; "0"; "-1"; ["000000"; "-2"]; {001010001100110101}

• Step 6, third couple of values :
{"-57"; "0"; "-1"; "000000"; "-2"; [{001.0}; {1.0}]; {001100110101}
{"-57"; "0"; "-1"; "000000"; "-2"; [""; "+1"]; {001100110101}

• Step 7, fourth couple of values :
{"-57"; "0"; "-1"; "000000"; "-2"; "+1"; [{001.1}; {001.10}]; {101}
{"-57"; "0"; "-1"; "000000"; "-2"; "+1"; ["000"; "+3"]; {101}

• Step 8, last couple of values (no "0" and "EOB" value):
{"-57"; "0"; "-1"; "000000"; "-2"; "+1"; "000"; "+3"; [{1.}; {01}]
{"-57"; "0"; "-1"; "000000"; "-2"; "+1"; "000"; "+3"; [""; "EOB"]

• Final data list :
{"-57"; "0"; "-1"; "0"; "0"; "0"; "0"; "0"; "0"; "-2"; "+1"; "0"; "0"; "0"; "+3"; "EOB"}

7.2.5 End of sequence (EOS) (22 bits)

The end of sequence (EOS) which is 22 bits long :

0000 0000 0000 0000 1 11111

53

7.2.6 Intiating the video stream

To start receiving the video stream, a client just needs to send a UDP packet on the drone video
port.

The drone will stop sending data if it cannot detect any network activity from its client.

HOST CLIENT

Socket
initialization

Send one packet to VideoPort

(to wake-up the Host)

Send picture by blockline
(UDP packets) Image blocks

decoding

8 Drone Configuration

The drone behaviour depends on many parameters which can be modified by using the AT*CONFIG
AT command, or by using the appropriate ARDroneLIB function (see chapter 4.1).

This chapter shows how to read/write a configuration parameter, and gives the list of param-
eters you can use in your application.

8.1 Reading the drone configuration

8.1.1 With ARDroneTool

ARDroneTool implements a ’control’ thread which automatically retrieves the drone configu-
ration at startup.

Include the <ardrone_tool/ardrone_tool_configuration.h> file in your C code to access the
ardrone_control_config structure which contains the current drone configuration. Its most in-
teresting fields are described in the next section.

If your application is structured as recommended in chapter 5 or you are modifying one of the
examples, the configuration should be retrieved by ARDroneTool before the threads contain-
ing your code get started by ARDroneTool .

8.1.2 Without ARDroneTool

The drone configuration parameters can be retrieved by sending the AT*CTRL command with
a mode parameter equaling 4 (CFG_GET_CONTROL_MODE).

The drone then sends the content of its configuration file, containing all the available configu-
ration parameters, on the control communication port (TCP port 5559). Parameters are sent as
ASCII strings, with the format Parameter_name = Parameter_value.

Here is an example of the sent configuration :

55

56

Listing 8.1: Example of configuration file as sent on the control TCP port

GENERAL:num_version_config = 1
GENERAL:num_version_mb = 17
GENERAL:num_version_soft = 1.1.3
GENERAL:soft_build_date = 2010-08-06 09:48
GENERAL:motor1_soft = 1.8
GENERAL:motor1_hard = 3.0
GENERAL:motor1_supplier = 1.1
GENERAL:motor2_soft = 1.8
GENERAL:motor2_hard = 3.0
GENERAL:motor2_supplier = 1.1
GENERAL:motor3_soft = 1.8
GENERAL:motor3_hard = 3.0
GENERAL:motor3_supplier = 1.1
GENERAL:motor4_soft = 1.8
GENERAL:motor4_hard = 3.0
GENERAL:motor4_supplier = 1.1
GENERAL:ardrone_name = My ARDrone
GENERAL:flying_time = 1810
GENERAL:navdata_demo = TRUE
GENERAL:com_watchdog = 2
GENERAL:video_enable = TRUE
GENERAL:vision_enable = TRUE
GENERAL:vbat_min = 9000
CONTROL:accs_offset = { -2.2696499e+03 1.9345000e+03 1.9331300e+03 }
CONTROL:accs_gains = { 9.6773100e-01 2.3794901e-02 7.7836603e-02 -1.2318300e-02

-9.8853302e-01 3.2103900e-02 7.2116204e-02 -5.6212399e-02 -9.8713100e-01 }
CONTROL:gyros_offset = { 1.6633199e+03 1.6686300e+03 1.7021300e+03 }
CONTROL:gyros_gains = { 6.9026551e-03 -6.9553638e-03 -3.8592720e-03 }
CONTROL:gyros110_offset = { 1.6560601e+03 1.6829399e+03 }
CONTROL:gyros110_gains = { 1.5283586e-03 -1.5365391e-03 }
CONTROL:gyro_offset_thr_x = 4.0000000e+00
CONTROL:gyro_offset_thr_y = 4.0000000e+00
CONTROL:gyro_offset_thr_z = 5.0000000e-01
CONTROL:pwm_ref_gyros = 471
CONTROL:control_level = 1
CONTROL:shield_enable = 1
CONTROL:euler_angle_max = 3.8424200e-01
CONTROL:altitude_max = 3000
CONTROL:altitude_min = 50
CONTROL:control_trim_z = 0.0000000e+00
CONTROL:control_iphone_tilt = 3.4906584e-01
CONTROL:control_vz_max = 1.2744493e+03
CONTROL:control_yaw = 3.1412079e+00
CONTROL:outdoor = TRUE
CONTROL:flight_without_shell = TRUE
CONTROL:brushless = TRUE
CONTROL:autonomous_flight = FALSE
CONTROL:manual_trim = FALSE
NETWORK:ssid_single_player = AR_hw11_sw113_steph
NETWORK:ssid_multi_player = AR_hw11_sw113_steph
NETWORK:infrastructure = TRUE
NETWORK:secure = FALSE
NETWORK:passkey =
NETWORK:navdata_port = 5554
NETWORK:video_port = 5555
NETWORK:at_port = 5556
NETWORK:cmd_port = 0
NETWORK:owner_mac = 04:1E:64:66:21:3F
NETWORK:owner_ip_address = 0
NETWORK:local_ip_address = 0
NETWORK:broadcast_address = 0

57

PIC:ultrasound_freq = 8
PIC:ultrasound_watchdog = 3
PIC:pic_version = 100925495
VIDEO:camif_fps = 15
VIDEO:camif_buffers = 2
VIDEO:num_trackers = 12
DETECT:enemy_colors = 1
SYSLOG:output = 7
SYSLOG:max_size = 102400
SYSLOG:nb_files = 5
.

8.2 Setting the drone configuration

8.2.1 With ARDroneTool

Use the ARDRONE_TOOL_CONFIGURATION_ADDEVENT macro to set any of the configuration pa-
rameters.

This macro makes ARDroneTool queue the new value in an internal buffer, send it to the
drone, and wait for an acknowledgment from the drone.

It takes as a first parameter the name of the parameter (see next sections to get a list or look at
the config_keys.h file in the SDK). The second parameter is the new value to send to the drone.
The third parameter is a callback function that will be called upon completion.

The callback function type is void (*callBack)(unsigned int success). The configuration tool will
call the callback function after any attempt to set the configuration, with zero as the parameter
in case of failure, and one in case of success. In case of failure, the tool will automatically retry
after an amount of time.

Your program must not launch a new ARDRONE_TOOL_CONFIGURATION_ADDEVENT call at each
time the callback function is called with zero as its parameter.

The callback function pointer can be a NULL pointer if your application don’t need any ac-
knowledgment.

Listing 8.2: Example of setting a config. paramter

int enemy_color;
enemy_color = ORANGE_GREEN;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT(enemy_colors, enemy_color, NULL);

58

8.2.2 From the Control Engine for iPhone

Using the Control Engine for iPhone, the ARDrone instance of your application can accept
messages to control some parts of the configuration.

The message is -(void) executeCommandIn:(ARDRONE_COMMAND_IN)commandId withParam-
eter:(void *)parameter fromSender:(id)sender.

The first parameter is the ID of the config you want to change. The ID list can be found in the
ARDroneTypes.h.

The second parameter is the parameter of the command.
As 1.6 SDK, parameter types are the following :
- ARDRONE_COMMAND_ISCLIENT : raw integer casted to (void *).
- ARDRONE_COMMAND_DRONE_ANIM : ARDRONE_ANIMATION_PARAM pointer.
- ARDRONE_COMMAND_DRONE_LED_ANIM : ARDRONE_LED_ANIMATION_PARAM
pointer.
- ARDRONE_COMMAND_VIDEO_CHANNEL : raw integer casted to (void *). Values can be
found in ARDroneGeneratedTypes.h file
- ARDRONE_COMMAND_CAMERA_DETECTION : raw integer casted to (void *). Values
can be found in ARDroneGeneratedTypes.h file
- ARDRONE_COMMAND_ENEMY_SET_PARAM : ARDRONE_ENEMY_PARAM pointer.
- ARDRONE_COMMAND_ENABLE_COMBINED_YAW : boolean casted to (void *).
- ARDRONE_COMMAND_SET_FLY_MODE : raw integer casted to (void *). Values can be
found in ardrone_api.h file

The third parameter is currently unused (passing nil is ok).

Listing 8.3: Example of setting detection parameters with Control Engine

ARDRONE_ENEMY_PARAM enemyParam;
enemyParam.color = ARDRONE_ENEMY_COLOR_GREEN;
enemyParam.outdoor_shell = 0;
[ardrone executeCommandIn:ARDRONE_COMMAND_ENEMY_SET_PARAM withParam:(void *)&

enemyParam fromSender:nil];

8.2.3 Without ARDroneTool

Use the AT*CONFIG command to send a configuration value to the drone. The command must
be sent with a correct sequence number, the parameter note between double-quotes, and the
parameter value between double-quotes.

59

8.3 General configuration

All the configurations are given accordingly to the config_keys.h file order.

In the API examples, the myCallback argument can be a valid pointer to a callback function, or
a NULL pointer if no callback is needed by the application.

GENERAL:num_version_config
Read only

Description :
Version of the configuration subsystem (Currently 1).

GENERAL:num_version_mb Read only
Description :
Hardware version of the drone motherboard.

GENERAL:num_version_soft Read only
Description :
Firmware version of the drone.

GENERAL:soft_build_date Read only
Description :
Date of drone firmware compilation.

GENERAL:motor1_soft Read only
Description :
Software version of the motor 1 board. Also exists for motor2, motor3 and motor4.

GENERAL:motor1_hard Read only
Description :
Harware version of the motor 1 board. Also exists for motor2, motor3 and motor4.

GENERAL:motor1_supplier
Read only

Description :
Supplier version of the motor 1 board. Also exists for motor2, motor3 and motor4.

GENERAL:ardrone_name Read/Write
Description :
Name of the AR.Drone. This name may be used by video games developper to assign a default
name to a player, and is not related to the Wi-Fi SSID name.

60

AT command example : AT*CONFIG=605,"general:ardrone_name","My ARDrone Name"
API use example :

ARDRONE_TOOL_CONFIGURATION_ADDEVENT (ardrone_name, "My ARDrone Name",
myCallback);

GENERAL:flying_time
Read only

Description :
Numbers of seconds spent by the drone in a flying state in its whole lifetime.

GENERAL:navdata_demo Read/Write
Description :
The drone can either send a reduced set of navigation data (navdata) to its clients, or send
all the available information which contain many debugging information that are useless for
everyday flights.

If this parameter is set to TRUE, the reduced set is sent by the drone (this is the case in the
AR.FreeFlight iPhone application).

If this parameter is set to FALSE, all the available data are sent (this is the cae in the Linux
example ardrone_navigation).

AT command example : AT*CONFIG=605,"general:navdata_demo","TRUE"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (navdata_demo, TRUE, myCallback);

GENERAL:navdata_options
Read/Write

Description :
When using navdata_demo, this configuration allow the application to ask for others navdata
packets. Most common example is the default_navdata_options macro defined in the config_key.h
file. The full list of the possible navdata packets can be found in the navdata_common.h file.

AT command example : AT*CONFIG=605,"general:navdata_options","65537"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (navdata_options, (NAVDATA_OPTION_-

MASK (NAVDATA_DEMO_TAG) | NAVDATA_OPTION_MASK (NAVDATA_VISION_DETECT_-
TAG)), myCallback);

GENERAL:com_watchdog
Read/Write

Description :
Time the drone can wait without receiving any command from a client program. Beyond this
delay, the drone will enter in a ’Com Watchdog triggered’ state and hover on top a fixed point.

Note : This setting is currently disabled. The drone uses a fixed delay of 250 ms.

61

GENERAL:video_enable Read/Write
Description :
Reserved for future use. The default value is TRUE, setting it to FALSE can lead to unexpected
behaviour.

GENERAL:vision_enable Read/Write
Description :
Reserved for future use. The default value is TRUE, setting it to FALSE can lead to unexpected
behaviour.

Note : This setting is not related to the tag detection algoritms

GENERAL:vbat_min Read only
Description :
Reserved for future use. Minimum battery level before shutting down automatically the AR.Drone.

62

8.4 Control configuration

CONTROL:accs_offset Read only
Description :
Parrot internal debug informations. AR.Drone accelerometers offsets.

CONTROL:accs_gains
Read only

Description :
Parrot internal debug informations. AR.Drone accelerometers gains.

CONTROL:gyros_offset
Read only

Description :
Parrot internal debug informations. AR.Drone gyrometers offsets.

CONTROL:gyros_gains
Read only

Description :
Parrot internal debug informations. AR.Drone gyrometers gains.

CONTROL:gyros110_offset
Read only

Description :
Parrot internal debug informations.

CONTROL:gyros110_gains
Read only

Description :
Parrot internal debug informations.

CONTROL:gyro_offset_thr_x
Read only

Description :
Parrot internal debug informations.

Note : Also exists for the y and z axis.

CONTROL:pwm_ref_gyros
Read only

Description :
Parrot internal debug informations.

63

CONTROL:control_level Read/Write
Description :
This configuration describes how the drone will interprete the progressive commands from the
user.

Bit 0 is a global enable bit, and should be left active.
Bit refers to a combined yaw mode, where the roll commands are used to generates roll+yaw
based turns. This is intended to be an easier control mode for racing games.

Note : This configuration and the flags parameter of the ardrone_at_set_progress_commands func-
tion will be compared on the drone. To activate the combined yaw mode, you must set both
the bit 1 of the control_level configuration, and the bit 1 of the function parameters.
The ardrone_at_set_progress_commands function parameter reflects the current user commands,
and must be set only when the combined_yaw controls are activated (e.g. both buttons pressed)
This configuration should be left active on the AR.Drone if your application makes use of the
combined_yaw functionnality.

AT command example : AT*CONFIG=605,"control:control_level","3"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (control_level, (ardrone_control_-

config.control_level | (1 « CONTROL_LEVEL_COMBINED_YAW)), myCallback);

CONTROL:shield_enable Read/Write
Description :
Reserved for future use.

CONTROL:euler_angle_max
Read/Write

Description :
Maximum bending angle for the drone in radians, for both pitch and roll angles.

The progressive command function and its associated AT command refer to a percentage of
this value.

This parameter is a positive floating-point value between 0 and 0.52 (ie. 30 deg). Higher values
might be available on a specific drone but are not reliable and might not allow the drone to stay
at the same altitude.

This value will be saved to indoor/outdoor_euler_angle_max, according to the CONFIG:outdoor
setting.

AT command example : AT*CONFIG=605,"control:euler_angle_max","0.25"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (euler_angle_max, 0.25, myCallback);

CONTROL:altitude_max Read/Write
Description :

64

Maximum drone altitude in millimeters.

Give an integer value between 500 and 5000 to prevent the drone from flying above this limit,
or set it to 10000 to let the drone fly as high as desired.

AT command example : AT*CONFIG=605,"control:altitude_max","3000"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (altitude_max, 3000, myCallback);

CONTROL:altitude_min Read/Write
Description :
Minimum drone altitude in millimeters.

Should be left to default value, for control stabilities issues.

AT command example : AT*CONFIG=605,"control:altitude_min","50"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (altitude_min, 50, myCallback);

CONTROL:control_trim_z Read/Write
Description :
Manual trim function : should not be used.

CONTROL:control_iphone_tilt
Read/Write

Description :
The angle in radians for a full iPhone accelerometer command. This setting is stored and com-
puted on the AR.Drone so an iPhone application can send progressive commands without
taking this in account.
On AR.FreeFlight, the progressive command sent is between 0 and 1 for angles going from 0 to
90. With a control_iphone_tilt of 0.5 (approx 30), the drone will saturate the command at 0.33

Note : This settings corresponds to the iPhone tilt max setting of AR.FreeFlight

AT command example : AT*CONFIG=605,"control:control_iphone_tilt","0.25"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (control_iphone_tilt, 0.25, myCallback);

CONTROL:control_vz_max Read/Write
Description :
Maximum vertical speed of the AR.Drone, in milimeters per second.

Recommanded values goes from 200 to 2000. Others values may cause instability.

This value will be saved to indoor/outdoor_control_vz_max, according to the CONFIG:outdoor

65

setting.

AT command example : AT*CONFIG=605,"control:control_vz_max","1000"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (control_vz_max, 1000, myCallback);

CONTROL:control_yaw
Read/Write

Description :
Maximum yaw speed of the AR.Drone, in radians per second.

Recommanded values goes from 40/s to 350/s (approx 0.7rad/s to 6.11rad/s). Others values
may cause instability.

This value will be saved to indoor/outdoor_control_yaw, according to the CONFIG:outdoor
setting.

AT command example : AT*CONFIG=605,"control:control_yaw","3.0"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (control_yaw, 3.0, myCallback);

CONTROL:outdoor Read/Write
Description :
This settings tells the control loop that the AR.Drone is flying outside.

Setting the indoor/outdoor flight will load the corresponding indoor/outdoor_control_yaw,
indoor/outdoor_euler_angle_max and indoor/outdoor_control_vz_max.

Note : This settings corresponds to the Outdoor flight setting of AR.FreeFlight

AT command example : AT*CONFIG=605,"control:outdoor","TRUE"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (outdoor, TRUE, myCallback);

CONTROL:flight_without_shell
Read/Write

Description :
This settings tells the control loop that the AR.Drone is currently using the outdoor hull. Deac-
tivate it when flying with the indoor hull

Note : This settings corresponds to the outdoor hull setting of AR.FreeFlight.

Note : This setting is not linked with the CONTROL:outdoor setting. They have different effects
on the control loop.

AT command example : AT*CONFIG=605,"control:flight_without_shell","TRUE"

API use example :

66

ARDRONE_TOOL_CONFIGURATION_ADDEVENT (flight_without_shell, TRUE, myCallback);

CONTROL:brushless Read/Write
Description :
Deprecated.

CONTROL:autonomous_flight
Read/Write

Description :
Deprecated : This setting enables the autonomous flight mode on the AR.Drone. This mode was
developped for 2010 CES and is no longer maintained.

Enabling this can cause unexpected behaviour on commercial AR.Drones.

CONTROL:manual_trim Read only
Description :
This setting will be active if the drone is using manual trims. Manual trims should not be used
on commercial AR.Drones, and this field should always be FALSE.

CONTROL:indoor_euler_angle_max
Read/Write

Description :
This setting is used when CONTROL:outdoor is false. See the CONTROL:euler_angle_max de-
scription for further informations.

CONTROL:indoor_control_vz_max Read/Write
Description :
This setting is used when CONTROL:outdoor is false. See the CONTROL:control_vz_max de-
scription for further informations.

CONTROL:indoor_control_yaw
Read/Write

Description :
This setting is used when CONTROL:outdoor is false. See the CONTROL:control_yaw description
for further informations.

CONTROL:outdoor_euler_angle_max
Read/Write

Description :
This setting is used when CONTROL:outdoor is true. See the CONTROL:euler_angle_max de-
scription for further informations.

67

CONTROL:outdoor_control_vz_max Read/Write
Description :
This setting is used when CONTROL:outdoor is true. See the CONTROL:control_vz_max descrip-
tion for further informations.

CONTROL:outdoor_control_yaw
Read/Write

Description :
This setting is used when CONTROL:outdoor is true. See the CONTROL:control_yaw description
for further informations.

CONTROL:flying_mode
Read/Write

Description :
Since 1.5.1 firmware, the AR.Drone has two different flight modes. The first is the legacy
FreeFlight mode, where the user controls the drone, an a new semi-autonomous mode, called
"HOVER_ON_TOP_OF_ROUNDEL", where the drones will hover on top of a ground tag, and
won’t respond to the progressive commands. This new flying mode was developped for 2011
CES autonomous demonstration.

Note : This mode is experimental, and should be used with care. The roundel (cocarde) detection and
this flying mode are subject to changes without notice in further firmwares.

Note : Roundel detection must be activated with the DETECT:detect_type setting if you want to
use the "HOVER_ON_TOP_OF_ROUNDEL" mode.

Note : Enum with modes can be found in the ardrone_api.h file.

AT command example : AT*CONFIG=605,"control:flying_mode","0"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (flying_mode, FLYING_MODE_FREE_-

FLIGHT, myCallback);

CONTROL:flight_anim
Read/Write

Description :
Use this setting to launch drone animations.

The parameter is a string containing the animation number and its duration, separated with a
comma. Animation numbers can be found in the config.h file.

Note : The MAYDAY_TIMEOUT array contains defaults durations for each flight animations.

AT command example : AT*CONFIG=605,"control:flight_anim","3,2"

API use example :
char param[20];

snprintf (param, sizeof (param), "%d,%d", ARDRONE_ANIMATION_YAW_SHAKE,
MAYDAY_TIMEOUT[ARDRONE_ANIMATION_YAW_SHAKE]);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (flight_anim, param, myCallback);

68

8.5 Network configuration

NETWORK:ssid_single_player
Read/Write

Description :
The AR.Drone SSID. Changes are applied on reboot

AT command example : AT*CONFIG=605,"network:ssid_single_player","myArdroneNetwork"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (ssid_single_player, "myArdroneNetwork",

myCallback);

NETWORK:ssid_multi_player
Read/Write

Description :
Currently unused.

NETWORK:infrastructure Read/Write
Description :
Reserved for future use.

NETWORK:secure Read/Write
Description :
Reserved for future use.

NETWORK:passkey
Read/Write

Description :
Reserved for future use.

NETWORK:navdata_port
Read only

Description :
The UDP socket port where the navdata are sent. Defaults to 5554.

NETWORK:video_port
Read only

Description :
The UDP socket port where the vido is sent. Defaults to 5555.

NETWORK:at_port
Read only

Description :

69

The UDP socket port where the AT*commands are sent. Defaults to 5556

NETWORK:cmd_port
Read only

Description :
Unused.

NETWORK:owner_mac Read/Write
Description :
Mac addres paired with the AR.Drone. Set to "00:00:00:00:00:00" to unpair the AR.Drone.

AT command example : AT*CONFIG=605,"network:owner_mac","01:23:45:67:89:ab"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (owner_mac, "cd:ef:01:23:45:67",

myCallback);

NETWORK:owner_ip_address
Read/Write

Description :
Unused.

NETWORK:local_ip_address
Read/Write

Description :
Unused.

NETWORK:broadcast_ip_address
Read/Write

Description :
Unused.

70

8.6 Nav-board configuration

PIC:ultrasound_freq
Read/Write

Description :
Frequency of the ultrasound measures for altitude. Using two different frequencies can reduce
significantly the ultrasound perturbations between two AR.Drones.

Only two frequencies ar availaible : 22.22 and 25 Hz.

The enum containing the values are found in the ardrone_common_config.h file.

AT command example : AT*CONFIG=605,"pic:ultrasound_freq","7"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (ultrasound_freq, ADC_CMD_SELECT_-

ULTRASOUND_22Hz, myCallback);

PIC:ultrasound_watchdog
Read/Write

Description :
Debug configuration that should not be modified.

PIC:pic_version
Read only

Description :
The software version of the Nav-board.

71

8.7 Video configuration

VIDEO:camif_fps
Read only

Description :
Current FPS of the video interface. This may be different than the actual framerate.

VIDEO:camif_buffers Read only
Description :
Buffer depth for the video interface.

VIDEO:num_trackers Read only
Description :
Number of tracking point for the speed estimation.

VIDEO:bitrate Read/Write
Description :
Reserved for future use.

VIDEO:bitrate_control_mode Read/Write
Description :
Enables the automatic bitrate control of the video stream. Enabling this configuration will
reduce the bandwith used by the video stream under bad Wi-Fi conditions, reducing the com-
mands latency.

Note : Before enabling this config, make sure that your video decoder is able to handle the
variable bitrate mode !

AT command example : AT*CONFIG=605,"video:bitrate_control_mode","1"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (bitrate_control_mode, 0, myCallback);

VIDEO:codec Read/Write
Description :
Reserved for future use.

VIDEO:videol_channel Read/Write
Description :
The video channel that will be sent to the controller.

72

Current implementation supports 4 different channels :
- ARDRONE_VIDEO_CHANNEL_HORI
- ARDRONE_VIDEO_CHANNEL_VERT
- ARDRONE_VIDEO_CHANNEL_LARGE_HORI_SMALL_VERT
- ARDRONE_VIDEO_CHANNEL_LARGE_VERT_SMALL_HORI

AT command example : AT*CONFIG=605,"video:video_channel","2"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (video_channel, ARDRONE_VIDEO_-

CHANNEL_HORI, myCallback);

73

8.8 Leds configuration

LEDS:leds_anim Read/Write
Description :
Use this setting to launch leds animations.

The parameter is a string containing the animation number, its frequency (Hz) and its duration
(s), separated with commas. Animation names can be found in the led_animation.h file.

Note : The frequency parameter is a floating point parameter, but in configuration string it will
be print as the binary equivalent integer.

AT command example : AT*CONFIG=605,"leds:leds_anim","3,1073741824,2"

API use example :
char param[20];

float frequency = 2.0;
snprintf (param, sizeof (param), "%d,%d,%d", ARDRONE_LED_ANIMATION_BLINK_-
ORANGE, *(unsigned int *)&frequency, 5);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (flight_anim, param, myCallback);

74

8.9 Detection configuration

DETECT:enemy_colors
Read/Write

Description :
The color of the hulls you want to detect. Possible values are green, yellow and blue (respective
integer values as of 1.5.1 firmware : 1, 2, 3).

Note : This config will only be used for standard tags/hulls detection. New detection algo-
rithms (Cocarde, Stripe) have predefined colors.

AT command example : AT*CONFIG=605,"detect:enemy_colors","2"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (enemy_colors, ARDRONE_ENEMY_-

COLOR_BLUE, myCallback);

DETECT:enemy_without_shell
Read/Write

Description :
Activate this in order to detect outdoor hulls. Deactivate to detect indoor hulls.

AT command example : AT*CONFIG=605,"detect:enemy_without_shell","1"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (enemy_without_shell, 0, myCallback);

DETECT:detect_type
Read/Write

Description :
Select the active tag detection.

Some details about detections can be found in the ardrone_api.h file.

Note : Stripe detection is experimental and should not be used as of 1.5.1 firmware.

Note : Roundel (Cocarde) detection is experimental and may be changed in further firmwares.

Note : The multiple detection mode allow the selection of different detections on each camera.
Note that you should NEVER enable two similar detection on both cameras, as this will cause
failures in the algorithms.

AT command example : AT*CONFIG=605,"detect:detect_type","2"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (detect_type, ARDRONE_CAMERA_-

DETECTION_COCARDE, myCallback);

75

DETECT:detections_select_h Read/Write
Description :
Bitfields to select detections that should be enabled on horizontal camera.

Detections offsets are defined in the ardrone_api.h file.

Note : Stripe detection is experimental and should not be used as of 1.5.1 firmware.

Note : Roundel (Cocarde) detection is experimental and may be changed in further firmwares.

Note : You should NEVER enable one detection on two different cameras.

AT command example : AT*CONFIG=605,"detect:detections_select_h","1"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (detections_select_h, TAG_TYPE_-

MASK (TAG_TYPE_SHELL_TAG), myCallback);

DETECT:detections_select_v_hsync
Read/Write

Description :
Bitfileds to select the detections that should be enabled on vertical camera.

Detection enables in the hsync mode will run synchronously with the horizontal camera pipeline,
a 20fps instead of 60. This can be useful to reduce the CPU load when you don’t need a 60Hz
detection.

Note : You should use either v_hsync or v detections, but not both at the same time. This can
cause unexpected behaviours.

Note : Notes from DETECT:detections_select_h also applies.

AT command example : AT*CONFIG=605,"detect:detections_select_v_hsync","2"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (detections_select_v_hsync, TAG_-

TYPE_MASK (TAG_TYPE_ROUNDEL), myCallback);

DETECT:detections_select_v Read/Write
Description :
Bitfileds to select the detections that should be active on vertical camera.

These detections will be run at 60Hz. If you don’t need that speed, using detections_select_v_-
hsync instead will reduce the CPU load.

Note : See the DETECT:detections_select_h and DETECT:detections_select_v_hsync for further de-
tails.

AT command example : AT*CONFIG=605,"detect:detections_select_v","2"

API use example :

76

ARDRONE_TOOL_CONFIGURATION_ADDEVENT (detections_select_v, TAG_TYPE_-
MASK (TAG_TYPE_ROUNDEL), myCallback);

77

8.10 SYSLOG section

This section is a Parrot internal debug section, and should therefore not be used.

9 F.A.Q.

Here you will find questions frequently asked on the different forums.

Why is the Android example incomplete ?

The AR.Drone product was designed to work with an ad-hoc Wifi connection, in order to be
controllable anywhere in the wild from a mobile device like the iPhone. Unfortunately Google
does not currently officially allow the use of ad-hoc connections with the Android OS. Though
such connection is technically possible, the Android example application is not a priority until
Google changes its mind. It was successfully run on a Nexus One phone though, and the code
is provided for people who are not afraid of jail breaking their phone and getting their hands
dirty.

Can I add some additional hardware to the drone ?

This is currently not supported. The drone has a USB master port that could be used later to
customize the drone hardware, but it is disbaled on current drones.

Can I replace the embedded drone software with my own ? Can I get the sensors and engines
specifications ?

No. This SDK is meant to allow remote controlling of the drone only.

79

Part II

Tutorials

81

10 Building the iOS
Example

The AR.Drone SDK provides the full source code of AR.FreeFligt iPhone application.

To compile both the Control Engine and the AR.FreeFlight project, you need to use Apple
XCode IDE on an Apple computer.
You also need to have an Apple developper account with associated Developper profiles.
Further informations can be found on Apple website

83

http://developer.apple.com/devcenter/ios/index.action

11 Building the Linux
Examples

The AR.Drone SDK provides two client application examples for Linux.

The first one, called Linux SDK Demo, shows the minimum software required to control an
AR.Drone with a gamepad. It should be used as a skeleton for all your Linux projects.

The second one, called ARDrone Navigation, is the tool used internally at Parrot to test drones
in flight. It shows all the information sent by the drone during a flight session.

In this section, we are going to show you how to build those example on an Ubuntu 10.04
workstation. We will suppose you are familiar with C programming and you already have a C
compiler installed on your machine.

11.1 Set up your development environment

If you have not done so yet, please download the latest version of the SDK here (you must first
register on the site).

Then unpack the archive ARDrone_API-x.x.x.tar.bz2 in the directory of your choice. In this
document we will note 〈SDK〉the extracted directory name.

$ tar xjf ARDrone_API-«<ARDversion»>.tar.bz2

85

https://projects.ardrone.org/projects/list_files/ardrone-api

86

To build the examples, you will need libraries like IW (for wireless management), gtk (to dis-
play an graphic interface), and SDL (to easily display the video stream) :

$ sudo apt-get update
$ sudo apt-get install libsdl-dev libgtk2.0-dev libiw-dev

11.2 Prepare the source code

The demonstration programs allow you to pilot the drone with a gamepad. To keep the code
simple enough, it only works with two models of gamepads : a Logitech Precision gamepad
and a Sony Playstation 3 gamepad. If you own one of these, you can plug it now and skip
this section. Otherwise you must first change a few settings in the code, or the demonstration
programs won’t do much.

Identify your gamepad

Plug the gamepad you want to use, and retrieve its USB identifier with the lsusb command.
Here is an example for the logitech gamepad :

We are interested in the ID 046d:c21a information. It must be copied at the beginning of the
sdk_demo/Sources/UI/gamepad.h file.

Listing 11.1: Changing gamepad.h

...
// replace this value with the ID of your own gamepad
#define GAMEPAD_LOGITECH_ID 0x046dc21a
...

This value will be used by the SDK demo program to find which gamepad to query when
flying.

Next step is identifying the buttons on your gamepad, with the jstest utility :

$ sudo apt-get install joystick
$ jstest /dev/input/js0

87

You will see a list of axes and buttons; play with your gamepads buttons and make a list of
which buttons you want to use to go up/down,left/right,etc.

Once you have done so, edit the sdk_demo/Sources/UI/gamepad.c file, and search the gamepad_update
function. This function is called 20 times per second and reads the gamepad state to send
according commands to the drone. The code should be self-explanatory; have a look at the
update_ps3pad for an example with a analogic pad.

Please do the same to the and Navigation/Sources/UI/gamepad.c file, for the two examples
programs are independant and do not share their gamepad management code, though they
are the same. You can even copy/paste the gamepad files between the two examples.

11.3 Compile the SDK Demo example

First we must build the ARDroneLIB library, by using the makefile provided :

$ cd 〈SDK〉/ARDroneLib/Soft/Build
$ make

Compilation is successful if the last executed action is "ar rcs libpc_ardrone.a ..." and succeeds.

The second step is to compile the example itself :

$ cd 〈SDK〉/Examples/Linux/sdk_demo/Build
$ make

An executable program called linux_sdk_demo is created in the current working directory.

11.4 Run the SDK Demo program

First unpair your drone if you flew with an iPhone before !

Although the demonstration program can configure the WIFI network itself, it is safer for a
first test to manually connect your workstation to the drone WIFI network, and potentially
manually configure its IP address to 192.168.1.xxx and subnet mask to 255.255.255.0, where
xxx>1.

Once this is done, you can test the connection with a ping command :

$ ping 192.168.1.1

If connection is successful, the ping command will return you the time needed for data to go
back and forth to the drone.

You can then launch the demo program :

What to expect ?

88

Check the printed messages; it should say a gamepad was found and then initialize a bunch of
things :

Now press the button you chose as the select button. Press it several times to make the motors
leds switch between red (emergency mode) and green(ready to fly mode).

Clear the drone surroundings and press the button you chose as the start button. The drone
should start flying.

11.5 Compile the Navigation example

First we must build the ARDroneLIB library (unless you already have for the SDK Demo ex-
ample), by using the makefile provided :

$ cd 〈SDK〉/ARDroneLib/Soft/Build
$ make

Compilation is successful if the last executed action is "ar rcs libpc_ardrone.a ..." and succeeds.

The second step is to compile the example itself :

$ cd 〈SDK〉/Examples/Linux/Navigation/Build
$ make

An executable program called ardrone_navigation is created in the 〈SDK〉/ARDroneLib/Version/Release
directory.

89

11.6 Run the Navigation program

First unpair your drone if you flew with an iPhone before !

Although the demonstration program can configure the WIFI network itself, it is safer for a
first test to manually connect your workstation to the drone WIFI network, and potentially
manually configure its IP address to 192.168.1.xxx and subnet mask to 255.255.255.0, where
xxx>1.

Once this is done, you can test the connection with a ping command :

$ ping 192.168.1.1

If connection is successful, the ping command will return you the time needed for data to go
back and forth to the drone.

You can then launch the navigation program :

What to expect ?

You should see a GUI showing the current drone state. If connection with the drone is success-
ful, the central graphs entitled theta,phi and psi should change according to the drone angular
position. In the following screenshot the drone is bending backwards.

Now press the button you chose as the select button. Press it several times to make the motors
leds switch between red (emergency mode) and green(ready to fly mode).

Clear the drone surroundings and press the button you chose as the start button. The drone
should start flying.

90

Check the VISION image checkbox to make a second window appear, which will display the
video stream :

Feel free to click on all the buttons you want to discover all the commands and all the informa-
tion sent by the drone (just be careful with the PID gains) !

12 Building the Windows
Example

The AR.Drone SDK provides a client application example for Windows.

This example called SDK Demo, shows the minimum software required to control an AR.Drone
with a gamepad or a keyboard. It should be used as a skeleton for all your Windows projects.

In this section, we are going to show you how to build this example on a Windows Seven
workstation. We will suppose you are familiar with C programming and you already have
Visual Studio installed on your machine.

12.1 Set up your development environment

Get some development tools

This demo was tested with Microsoft Visual C++ 2008 Express edition, on a Windows 7 64Bits
Platform. It should work with any version of Windows XP, Vista, and Seven with minor
changes if any.

The required libraries are :

• The Microsoft Windows SDK (available here), Windows Headers and Library.

• The Microsoft DirectX SDK (available here), to use a Gamepad for drone control.

• The SDL Library (available here) which is used in the example to display the video, but
which can be easily replaced;

• Only for Windows XP and earlier - The Pthread for Win32 library (available here)

91

http://www.microsoft.com/downloads/details.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b&displaylang=en
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=3021d52b-514e-41d3-ad02-438a3ba730ba
http://www.libsdl.org/release/SDL-devel-1.2.14-VC8.zip
ftp://sourceware.org/pub/pthreads-win32/dll-latest/

92

Get the development files

You should have downloaded and unpacked the following elements :

• the ARDroneLib directory (with the Soft, VLIB and VP_SDK subdirectories)

• the Examples directory and specifically its Win32 subdirectory, which contains :

– the demonstration source code in sdk_demo

– the Visual C++ 2008 Express solution in VCProjects

Make the project aware of the code location on your computer

• Open the Visual Studio solution (file \Examples \Win 32\VCProjects \ARDrone \ARDrone .sln).

• Open the Property Manager tab (next to the Solution Explorer and the Class View tabs).

• Double click on any of the ArDrone_properties entry to edit it.

• Go to Common Properties -> User Macros

• Edit the ARDroneLibDir macro so its contains the path to the ARDroneLib directory on
your computer.

• Edit the Win32ClientDir macro so its contains the path to the demonstration source code
directory on your computer.

Note : you can also directly modify those paths by editing the ArDrone_properties.vsprops file
with any text editor.

Make the project aware of the libraries location on your computer

• In Visual Studio up to version 2008, the menu

Tools->Options->Environment->Projects and Solutions->VC++ Directories

must contains the paths to the Include and Libraries files for the above mentioned pre-
requisite libraries.

• In Visual Studio 2010, these directories must be set in the Project settings.

93

12.2 Required settings in the source code before compiling

Operating System related settings

In the Solution Explorer, search for the vp_os_signal_dep.h in the ARDroneLib project.

In this header file, one of the two following macros must be defined :

• Use #define USE_WINDOWS_CONDITION_VARIABLES to use Microsoft Windows SDK for
thread synchronisation (you must have Windows Vista or later)

• Use #define USE_PTHREAD_FOR_WIN32 to use pthreads for synchronisation (mandatory
if you have Windows XP or earlier, possible with later Windows versions)

Drone related settings

The win32_custom.h file contains the IP address to connect to. It’s 192.168.1.1 by default, but
the drone actual IP address might be different if several drones use the same Wifi network
(drones then pick random addresses to avoid IP address conflicts). Check your drone IP ad-
dress with pings or telnet commands before running the example.

Gamepad related settings

The gamepad.cpp file contains code to pick the first gamepad that can be found on the com-
puter and which is supported by the DirectX subsystem. In the example, buttons are statically
linked to drone actions for three specific gamepads. Other gamepads have no effect. Please
modify this code to enable the drone to move with your own input device (code should be self-
explanatory).

To identify the buttons available on your gamepad, go to the Windows configuration pannel
and go to your gamepad properties pages (there you can calibrate your pad and test the buttons
and sticks). You can also use the Microsoft DirectX SDK \Samples \C ++\DirectInput \Joystick
tool.

12.3 Compiling the example

Simply generate the solution once the above mentioned settings were done.

94

12.4 What to expect when running the example

Before running the example, one of the computer network connections must be connected with
the drone. Pinging the drone or connecting to its telnet port MUST work properly. The drone
MUST NOT be paired with an iPhone (using the drone with an iPhone prevents the drone from
accepting connections from any other device, including a PC, unless the unpair button (below
the drone) is pressed (which is acknowledged by the drone by making the motor leds blink).

If the network is correctly set, running the example will display a console window showing
which commands are being sent to the drone, and a graphic window showing the drone broad-
casted video.

You can then control the drone by using your gamepad, or use the keyboard with the following
jeys :

Key Action
8 or I Fly forward
2 or K Fly backward
4 or J Fly leftward
6 or L Fly rightward
A or + Fly up
Q or - Fly down
7 or U Rotate anticlockwise
9 or O Rotate clockwise
Space Takeoff/Land
Escape or Tab Send emergency1/recover from emergency signal
F Send flat trim command
G Hover

95

The example is basic one which simply hangs by saying "Connection timeout" if no connection
is possible. Check the network connectivity and restart the application if such thing happens.
The video window does not respond if no video is received from the drone. Close the console
window to close the application, or deport the SDL window management code from the video
processing thread to an independent thread.

12.5 Quick summary of problems solving

P. The application starts, but no video is displayed, or "Connection timeout" appears.
S. The client was to slow connecting to the drone, or could not connect. Restart the application,
or check your network configuration if the problem remains.

P. I can’t open any source file from the solution explorer
S. Make sure the ARDroneLibDir and Win32ClientDir macros are set in the Properties Man-
ager

P. I get the "Windows.h : no such file or directory" message when compiling.
S. Make sure the Windows SDK was correctly installed. A light version should be installed
along with VC Express.

P. I get the "Cannot open input file ’dxguid.lib’ message when compiling.
S. Make sure the DirectX SDK was correctly installed

P. I get the "Error spawning mt.exe" message when compiling.
S. There is a problem with the Windows SDK installation. Please reinstall.

13 Other platforms

13.1 Android example

Please refer to the <SDK>/Examples/Android/ardrone directory, and its two files INSTALL and
README to compile the Android example. It was successfully tested (controls and video
display) on a rooted Google/HTC Nexus One phone, using NDK r3.

97

	A.R.Drone Developer Guide
	Contents

	SDK documentation
	Introduction
	AR.Drone Overview
	Introduction to quadrotor UAV
	Indoor and outdoor design configurations
	Engines
	LiPo batteries
	Motion sensors
	Assisted control of basic manoeuvres
	Advanced manoeuvres using host tilt sensors
	Video streaming and tags detection
	Wifi network and connection
	Communication services between the AR.Drone and a client device

	AR.Drone SDK Overview
	Layered architecture
	The AR.Drone Library
	The AR.Drone Tool
	The AR.Drone Control Engine - only for Apple iPhone

	ARDroneLIB and ARDroneTool functions
	Drone control functions
	ardrone_tool_set_ui_pad_start
	ardrone_tool_set_ui_pad_select
	ardrone_at_set_progress_cmd

	Drone configuration functions
	ardrone_at_navdata_demo
	ardrone_at_set_navdata_all

	Creating an application with ARDroneTool
	Quick steps to create a custom AR.Drone application
	Customizing the client initialization
	Using navigation data
	Command line parsing for a particular application
	Thread management in the application
	Managing the video stream
	Adding control devices

	AT Commands
	AT Commands syntax
	Commands sequencing
	Floating-point parameters
	Deprecated commands
	AT Commands summary
	Commands description
	AT*REF
	AT*PCMD
	AT*FTRIM
	AT*CONFIG
	AT*COMWDG
	AT*LED
	AT*ANIM

	Incoming data streams
	Navigation data
	Navigation data stream
	Initiating the reception of Navigation data
	Augmented reality data stream

	The video stream
	Image structure
	Entropy-encoding process
	Entropy-decoding process
	Example
	End of sequence (EOS) (22 bits)
	Intiating the video stream

	Drone Configuration
	Reading the drone configuration
	With ARDroneTool
	Without ARDroneTool

	Setting the drone configuration
	With ARDroneTool
	From the Control Engine for iPhone
	Without ARDroneTool

	General configuration
	GENERAL:num_version_config
	GENERAL:num_version_mb
	GENERAL:num_version_soft
	GENERAL:soft_build_date
	GENERAL:motor1_soft
	GENERAL:motor1_hard
	GENERAL:motor1_supplier
	GENERAL:ardrone_name
	GENERAL:flying_time
	GENERAL:navdata_demo
	GENERAL:navdata_options
	GENERAL:com_watchdog
	GENERAL:video_enable
	GENERAL:vision_enable
	GENERAL:vbat_min

	Control configuration
	CONTROL:accs_offset
	CONTROL:accs_gains
	CONTROL:gyros_offset
	CONTROL:gyros_gains
	CONTROL:gyros110_offset
	CONTROL:gyros110_gains
	CONTROL:gyro_offset_thr_x
	CONTROL:pwm_ref_gyros
	CONTROL:control_level
	CONTROL:shield_enable
	CONTROL:euler_angle_max
	CONTROL:altitude_max
	CONTROL:altitude_min
	CONTROL:control_trim_z
	CONTROL:control_iphone_tilt
	CONTROL:control_vz_max
	CONTROL:control_yaw
	CONTROL:outdoor
	CONTROL:flight_without_shell
	CONTROL:brushless
	CONTROL:autonomous_flight
	CONTROL:manual_trim
	CONTROL:indoor_euler_angle_max
	CONTROL:indoor_control_vz_max
	CONTROL:indoor_control_yaw
	CONTROL:outdoor_euler_angle_max
	CONTROL:outdoor_control_vz_max
	CONTROL:outdoor_control_yaw
	CONTROL:flying_mode
	CONTROL:flight_anim

	Network configuration
	NETWORK:ssid_single_player
	NETWORK:ssid_multi_player
	NETWORK:infrastructure
	NETWORK:secure
	NETWORK:passkey
	NETWORK:navdata_port
	NETWORK:video_port
	NETWORK:at_port
	NETWORK:cmd_port
	NETWORK:owner_mac
	NETWORK:owner_ip_address
	NETWORK:local_ip_address
	NETWORK:broadcast_ip_address

	Nav-board configuration
	PIC:ultrasound_freq
	PIC:ultrasound_watchdog
	PIC:pic_version

	Video configuration
	VIDEO:camif_fps
	VIDEO:camif_buffers
	VIDEO:num_trackers
	VIDEO:bitrate
	VIDEO:bitrate_control_mode
	VIDEO:codec
	VIDEO:videol_channel

	Leds configuration
	LEDS:leds_anim

	Detection configuration
	DETECT:enemy_colors
	DETECT:enemy_without_shell
	DETECT:detect_type
	DETECT:detections_select_h
	DETECT:detections_select_v_hsync
	DETECT:detections_select_v

	SYSLOG section

	F.A.Q.

	Tutorials
	Building the iOS Example
	Building the Linux Examples
	Set up your development environment
	Prepare the source code
	Compile the SDK Demo example
	Run the SDK Demo program
	Compile the Navigation example
	Run the Navigation program

	Building the Windows Example
	Set up your development environment
	Required settings in the source code before compiling
	Compiling the example
	What to expect when running the example
	Quick summary of problems solving

	Other platforms
	Android example

