
EE 472 Lab 2 (Group)

Scheduling, Digital I/O, Analog Input, and Pulse Generation

University of Washington - Department of Electrical Engineering

Introduction:

In this lab, you will develop a simple kernel and scheduler that will handle a number of

tasks. Each task is required to share data using pointers and appropriate data structures

(structs, arrays, etc). You will work with the Eclipse IDE development tool to edit and

build your software then download and debug your code in the Make environment.

Lab Objectives:

1. Build your background in C, pointers, function pointers, dereferencing, and

structs.

2. Write to and read from digital I/O ports

3. Read in an analog sensor

4. Generate pulses with accurate timing specifications

5. Build simple tasks and a task queue.

6. Build a simple scheduler and kernel

7. Use delay/timing functions

Prerequisites:

Familiarity with C programming, Eclipse and the IDE development environment,

debugging, and the Make Controller board. Use the class notes, slides, text, and

supplemental materials to brush up on concepts related to this lab. Make sure to cite

any materials or source code used from outside this class.

Theme for Labs 2-4 and Background:

For Labs 2-4, we will be implementing a subset of an autonomous unmanned aerial

vehicle (drone). Drones heavily rely on embedded systems as they take input from a

variety of navigation sensors and provide timely control. For Lab 2, you will learn about

building a scheduling algorithm by using external sensors and actuators to simulate

controlling a drone. In Labs 3 and 4, you will control an actual model drone (The Parrot

AR Drone - http://ardrone.parrot.com/parrot-ar-drone/usa/ , see Figure 1) and program

autonomous maneuvers using the real time sensor data coming from the drone itself

while it is in flight. You will be responsible for eventually implementing the control tasks

using a network connection between the Make platform and your drone.

http://ardrone.parrot.com/parrot-ar-drone/usa/

Figure 1: The AR Drone platform.

In this lab, we will implement a scheduler for controlling basic pulse generation, motor

control, sensor input, and displaying sensor data to the LCD display.

1. Simple Scheduler

Our very first “scheduler” will be extremely simple (for practice): just a loop which

sequentially calls our tasks (remember that tasks are just short functions):

while(1) {

task1();

task2();

...

sync();

}

sync(); will be the function which keeps your loop running at a known rate. In this lab,

we will do this by just wasting time in an infinite loop:

#define MAXLOOP <<some number>>

int i,j,k;

for(i=0;i<MAXLOOP;i++){

for(j=0;j<MAXLOOP;j++){

 for(k=0;k<MAXLOOP;k++){

}

}

}

We can tune the amount of delay by varying MAXLOOP or the number of nested loops.

You could also use a single loop.

2. Tasks

You will have some code before the while(1) loop which performs the necessary

initializations. Then the loop starts which repeatedly executes the tasks.

Write the following tasks. Each time it is called, the task must perform a small piece of

its job and quickly return so that the while loop scheduler can continue to operate.

 Pulse Generation: P1 and P2

Write two tasks to generate pulses, P1, and P2, which should appear on two

output ports. They should each be 10ms in duration. Their frequency should be

the same: between 50 to 100 pulses per minute, (start with 60 per minute) and P2

must follow P1 by 100ms. The frequency must be determined by the pulse value

contained in a struct of type Drone_Control_Params. The task must be called with

a pointer to this struct as its parameter. Don’t forget to initialize the struct before

the while loop. These tasks should be called each millisecond by your scheduler

(i.e., your schedule will run every millisecond). You may use this fact to infer

timing by counting the number of calls. The P1 and P2 signals should drive digital

outputs and connect to two LED’s. Use the oscilloscope to verify your timing and

for debugging.

Rationale for pulse P1 and P2: These pulses can be considered as a way to

internally implement certain low-level drone controls. For instance, you have to

hit the thrust motors with sequential pulses at different intervals for it to change

the motor rotation and cause it to generate torque (this is what makes the drone

rotate in mid air).

3. Advanced Scheduler

Consider the scheduler you built in 1 as your prototype in your lab report. The next step

is to build a slightly more advanced version of your previous scheduler. In this part, we

will set up some more tasks and data structures for the drone. Your code must implement

all of the items described below.

This time, instead of a loop just containing your task function calls, use a single function

for calling the tasks in the while(1) loop called start(). start() should have two parameters,

first a function pointer to the task to start, and second, a void pointer to any parameters.

Inside, start() should simply call the function with the supplied parameters. The scheduler

loop would then look like this:

while(1) {

 …

start(***TASK 1***);

start(***TASK 2***);

start(***TASK 3***);

...

timer_sync();

}

Replace ***TASK N*** with the appropriate pointers to the function and parameters for

task N. The function timer sync() can initially be commented out for testing.

After the tasks basically work, replace the delay loop from the first part in timer sync().

In this version, timer_sync() should continuously check a timer bit until 1ms has elapsed

and then reset the timer and return. This way the while(1) scheduler loop will run exactly

once per millisecond. Prior to the start of the scheduler loop, your code must initialize the

delay timer and configure it for the correct 1ms time interval.

After you have confirmed your timing and tasks work, we are going to use a proper timer.

Write an ISR routine which will respond to an interrupt from the timer. Modify the

initialization routine so that the timer will cause interrupts. Finally, modify timer_sync()

again so that it waits for a flag bit to be set by an ISR that you have written driven by the

1ms timer interrupt. This can just be an endless loop which checks for the bit to be non-

zero, then sets it to zero and returns. The ISR will set the bit to 1 when the interrupt

occurs (see the TinyTimer.zip sample code on how to use the timer).

*Extra Credit (+5pt): Implement the low-level timer specified in timer.pdf for

timing/counting*

After you have completed the synchronized basic scheduler, start on the advanced

scheduler. However, you should start designing the data structures as soon as possible in

this lab.

Create data structures for Task Control Blocks (TCBs) and the TaskQueue. The

TaskQueue should be initialized to contain all tasks, in order, with their status set to

WAITING. Each time it is entered, the scheduler must perform the following functions.

1. Identify which task is waiting to execute next.

2. Set the status of this task to RUNNING.

3. Set the status of the previous task to WAITING .

4. Call the function pointer of this task with its parameters from the current TCB.

5. When the current task returns, start with step 1.

You may implement the TaskQueue as an array. Likely this will be an array of pointers

that point to TCBs. Your TCBs should hold pointers to your tasks and any data the tasks

need.

4. New Tasks

Implement the following tasks in your advanced scheduler:

 Pulse Generation

Retain these tasks from section 1. You won’t have enough digital output

pins in the end, so just use the LEDs. You will want to test the output on

the scope to make sure the timing still works with the new scheduler. You

should adapt this task as necessary for the new scheduler.

 Sample Sensor Data

Sample the range finder using an analog input pin and store it in a

variable.

 Sample Joystick Data

Sample the analog signals from the joystick controller that we will be

providing you. You will have to assemble the joystick yourself

(http://www.sparkfun.com/tutorials/161). Note that you will be allowed to

use this joystick kit for your final project for controlling the drone.

 Display Sensor Data

Display the range finder data and the joystick data on the LCD display.

For the range finder, make sure to convert the ADC value to an actual

distance (maybe in centimeters). Take a look at the datasheet. Convert the

joystick data to a percentage (0-100% Left or Right, etc). You can either

try to fit everything on the screen or flash between the values. You should

use the display function you wrote in Lab1 to help with this. Because the

LCD is very slow, you will have to play around with your timings a lot to

get this to work. It is up to you on how you want to format the text on the

display. Make sure to explain how you made this work in the report.

 Take Off Thruster Motor Speed Control (Very Basic)

Using a variable, count the number of times the function has been called

by the scheduler. Every 1,000 counts (or whatever you find reasonable),

change the variable int MotorState from ON to OFF. A digital output bit

must be logic 1 when MotorState is ON and logic 0 when it is OFF.

Connect this bit to the pager motor on the Accessories board. We will

implement a better speed control scheme in the next lab. In the next lab,

you will also interface with the speed sensor to get accurate motor speed

information. You may go ahead and implement that task if you want, but it

is optional for this lab.

http://www.sparkfun.com/tutorials/161

Change the motor speed based on the joystick and range finder

information. Consider the joystick to be a manual override, so if the

joystick is set to >5% from center (or whatever you find reasonable), you

control the motor speed using the amount the joystick is moved (any

direction). If the joystick is set to <=5%, then use the altimeter or range

finder. As you move your hand closer to the range finder (shorter distance)

the motor should spin faster. At the furthest distance, just set a fixed

speed.

 Signaling

We will want to observe the scheduler cycle via the oscilloscope. To do

this we will create a little task that makes a pulse. This task should set a

digital output bit, delay for 1000 loops (without returning to the

scheduler), clear the bit, and return. This task must not erase or set any of

the other digital output bits. This will show how well your scheduling

algorithm is running.

 Timing

The timing function should now be accomplished by an ISR driven by

interrupts from the timer (or using a low-level timer). Program the timer to

generate an interrupt every 1 ms. If you use another timing interval for

your scheduler, make sure to justify it in your report. The ISR should

count these interrupts and place the count value in a global variable Global

Time. The global time could be useful for your other tasks.

5. Implementation

Remember from class that planning and designing can greatly reduce problems down the

road. Sit together as a group and write out all the structs on paper. Make some block

diagrams. Design a couple of the easy tasks which you can use to test the scheduler.

These tasks must be very simple and short, and you must be able to easily verify that they

work.

Implement your basic scheduler and make sure that the simple tasks work. Then

introduce your real tasks one by one. For the advanced scheduler, lay out the TaskQueue

on paper and walk through the scheduler manually to make sure you have thought

through your scheduler and tasks prior to coding. Also, figure out what data you want to

put in the TCBs. See “Implementing a Scheduler” on the class website under the

scheduler lecture for some tips.

Get the new scheduler working first with just one trivial task. Make sure that it continues

to run properly and that the first task is working. Add a couple of the more trivial tasks. A

very common trap in EE472 is to divide the job up by giving a task to each member of

the team. This can work well, but frequently leads to the following problem. The team

sits down with this document and divides the tasks up. They go off and work

independently, planning to merge their code a couple of days before the lab is due. Each

team member goes off and gets their task working fine. The trouble is, when the team

finally gets together to merge them for the demo, the tasks break each other somehow and

there is not enough time to debug this complex system and repair the problem. Assume

that debugging the complete system will take about half the available time! Make sure to

have frequent sessions were everyone comes back together to merge tasks.

You may use TinyTimer as your starting base application, your previous Lab 1, or

download a fresh tiny project from the makingthings website. You will have to modify

the makefile to include the appropriate libraries you will need (analogin, dipswitches,

etc). Make sure to include the header files in your c application as well. Take a look at the

makefile in this lab and Lab 1. Also, the makingthings website briefly discusses how to

incorporate libraries in your project build:

(http://www.makingthings.com/ref/firmware/html/group___libraries.html)

Very important note: The Tiny firmware build has very limited functionality, whereas

heavy includes a lot of features including a built in kernel/scheduler call FreeRTOS.

Since you will be building your own scheduler for this assignment, you will be working

off of Tiny. However, you will need certain libraries and header files from Heavy to

implement some of the tasks for this assignment. One library is analogin (analogin.c and

analogin.h). One problem is that when using the built in analogin.c code, it requires

FreeRTOS, which in turn has its own timer. That timer can interfere with the timer

interrupt you will be using. To get around this issue, we have provided our own

analogin.c and myanalogin.h files which you can use in Lab2 for doing any analog input.

The files and an example on how to use it are in AnalogExample.zip. Please review the

example code and makefile. If you find a way to still use the timer interrupt and the built

in analogin.c, I’ll give you some extra credit.

6. Testing Requirements

Each team will demonstrate their results in the lab. A sign-up sheet will be posted for

each team to sign up for a demo appointment. All team members must be present at the

demo. All team members must also be prepared to answer a question about any part of

the project. Of course many times one team member will know more than another about a

specific aspect. This is OK, but it is never acceptable to know nothing about part of the

code.

The following describes the most common tests we might ask you to apply to your code

during the demo. The instructors are not required to ask for all of these tests, nor are the

tests limited to those described below. All aspects of proper operation of the part are

subject to testing by whatever means the instructor deems necessary.

 Be prepared to explain all the defined data structures and how your scheduler

works.

http://www.makingthings.com/ref/firmware/html/group___libraries.html

 Pulse Generation and Timing will be verified by oscilloscope or frequency

counter measurements.

 The sensor data on the LCD should update as the range changes on the

altimeter and potentiometer and is it stable as other tasks are running.

 The Motor Speed Control task will be verified. Is the timing accurate? Stable

and consistent? Is it disturbed by operation of other tasks? Does the motor

change speed appropriate based on the sensor data?

 Signaling will also be checked via the oscilloscope.

7. Deliverables

Write up your lab report following the guideline on the course webpage. The report is due

by class time on the posted due date. You are welcome and encouraged to use any of the

example code on the system either directly or as a guide. For any such code you use, you

must cite the source. This is an easy step that you should get in the habit of doing. Do not

forget to use proper and consistent coding style; including proper comments.

Please also include the items listed below in your project report:

1. Source code (in an appendix).

 Make sure to use a readable coding style and comment your code.

2. The final report must include what aspects of the project each team member

contributed to (in an appendix).

 Please include in your lab report an estimate of the number of hours each team

member spent working on each of the following:

o Design

o Coding

o Test / Debug

o Documentation

Turn in your report and bin file to the class turn in website. Only one team member needs

to do this. The assignment is due prior to class time (12:30pm) on the posted date.

Grade breakdown:

50 points total:

Sensor input and display: 10 points

Accurate timing and motor control operations: 10 points

All parts of the scheduler implemented: 10 points

Project report: 15 points

Understandable and commented code: 5 points

Check out the makingthings website for more details on the digital and analog I/O
capabilities, dip switches, and the trim pot:

http://www.makingthings.com/documentation/tutorial/application-board-overview/tutorial-
all-pages

The API will also be very useful for this project.

Appendix A: Using Digital Output Lines

The Make Controller board is equipped with 8 digital output lines that can be set to

output a digital high or low individually. Each line is implemented as a half H-driver.

This allows us to generate various signals for debugging or for driving various devices.

We control a digital output line through the set value function that is part of Make API

(check out the API for more information and also how to use the Analog pins).

DigitalOut_SetValue(digitalOutputi,state);

digitalOutputi – the digital output to be controlled

state – the state (logical 0 or logical 1) to which the output is to be set

On the software side, you need to include the following header file

#include "digitalout.h"

and the following preprocessor directive. This directive should immediately follow all of

your other directives; before any code or function prototypes.

#undef OSC

http://www.makingthings.com/documentation/tutorial/application-board-overview/tutorial-all-pages
http://www.makingthings.com/documentation/tutorial/application-board-overview/tutorial-all-pages

Appendix B: Lab Hardware

Your lab hardware consists of the Make Controller Kit mounted on a platform that has

additional external devices such as the EE472 LED and pager motor board, a keypad, and

an LCD display.

 Red pushbutton for software erase..

 Four General Purpose signals which can be either inputs or outputs (Tx, Rx, CTS,

RTS).

 An accessories board which contains:

– Red, Yellow, and Green LEDs.

– Pager motor which can be driven ON or OFF via two BJT.

– Rotation sensor for pager motor: one pulse per revolution.

– Audio Amplifier and Speaker.

Accessories Board

The accessories board contains several devices for our software to interact with. The

schematics can be found below. Pinouts are shown for the black and white wire clamp

terminal block (pin number shown in white on the PCB. The test points are small loops to

which you hook your scope. The DC pager motor is wired to the two pads shown in

parallel with D5. The two BJTs (T1 and T2) are biased to switch fully on or off according

to an input on pin 6 of the terminal block. Note that power and ground are prewired via

solder connections to the board so it is always energized when the power switch is on.

