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ABSTRACT
Fingerprinting techniques for indoor localization have been
widely explored. A particular approach by Patel et al. sug-
gested leveraging of the residential powerline as the signal-
ing mechanism for a domestic location capability. In this pa-
per, we critically examine that initial work, called powerline
positioning (PLP). We find the proposed technique lacking
in temporal stability, requiring frequent and undesired re-
calibration in some environments. We also determine that
there is no a priori method to determine a pair of signal-
ing frequencies that will reliably work in any space. We
propose a wideband approach to PLP (WPLP) that injects
up to 44 different frequencies into the powerline. We show
that this WPLP approach improves upon overall positioning
accuracy, demonstrates greatly improved temporal stability
and has the added advantage of working in commercial in-
door spaces.
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INTRODUCTION
Ever since the seminal work on RADAR [4], many examples
of RF fingerprinting have shown how existing infrastructure
for mobile communications, primarily WiFi and GSM, can
be leveraged to provide location information. Patel et al.
discussed some of the downsides of relying on wireless ac-
cess points and cell towers for a domestic indoor location
system and proposed the alternative use of residential power
lines [16]. With powerline positioning (PLP), the electrical
infrastructure acts as an antenna, and artificially-generated
signals transmitted over this antenna demonstrate the spa-
tially differentiable and temporally stable signal map that is
necessary for a fingerprinting approach to work.

In this paper, we critically examine some of the important
details of the Patel et al. PLP proposal, presenting evidence
that the initial approach suffers from temporal instability in
certain environments. The original PLP solution suggested
the use of a pair of frequencies independently injected into
the power lines at separate points in the house. Though the
initial results were promising, we show that it is not possible
to select a specific pair of frequencies that can be guaranteed
to work in every setting over a period of time even as short
as two months. If a solution to this problem cannot be found,
frequent labor-intensive retuning and recalibration of the en-
tire system is needed. This will severly limit this system’s
acceptance in commercial and home environments.

This is not only a concern of PLP, but of all fingerprinting-
based localization systems. To date, most fingerprinting-
based indoor localization work has been carried out with
evaluation datasets obtained within a short time (hours to
a few days) of the training data set. In this work we consider
the implications of time separating the training and evalua-
tion data sets and show that the temporal stability of a naı̈ve
fingerprinting approach can be much worse than expected,
depending on the variability of signal generation and prop-
agation. We then show that the use of observations across
multiple frequencies, which we call Wideband PowerLine
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Positioning (WPLP) can help mitigate the effect of temporal
variation in signal propagation.

RELATED WORK
Indoor positioning has been a very active area of research
in ubiquitous computing for the past decade [9] and a vari-
ety of commercial systems are beginning to emerge. Some
of the first indoor solutions introduced new infrastructure to
support localization [22, 7, 8, 17, 18, 19, 21]. Despite some
success, as indicated by commercialized products [5, 2, 20,
3], the cost and effort of installation are a major drawback
to wide-scale deployment, particularly in domestic settings.
Thus, new projects in location-based systems research reuse
existing infrastructure to ease the burden of deployment and
lower the cost.

The earliest demonstrations leveraged WiFi access points
[4, 13], and shortly afterwards researchers began to explore
Bluetooth [14] and wireless telephony infrastructure, such as
GSM [6, 12, 15] or FM transmission towers [11]. A concern
is that individuals may not be able to control the character-
istics of this infrastructure and the operational parameters of
the infrastructure may change without warning, resulting in
the need to recalibrate, such as in the case of GSM and WiFi
localization. Individuals may opt to install their own WiFi
infrastructure in their home. However, the number of base
stations required for effective localization may be undesir-
able, because of the overhead of installing many units.

The desire to control the infrastructure and to scale inexpen-
sively to track a large number of objects inspired Patel et
al. to work on a positioning system that leveraged the pow-
erline infrastructure in a home [16]. The system requires
only two transmitter modules to be installed in the home
and compares favorably to GSM and WiFi-based localiza-
tion systems. The appeal of this approach inspired us to
provide a deeper understanding of the powerline-based lo-
calization approach and address the limitations of the prior
work, which will be described shortly, by presenting a new
wideband technique.

Localization Techniques
Traditional wireless signal triangulation, such as WiFi ac-
cess point triangulation, uses Received Signal Strength Indi-
cator (RSSI) information to estimate distance and determine
a location based on its geometric calculations. Other tech-
niques include the use of Time of Arrival, as in the case of
ultrasound, or Angle of Arrival, such as with Ultra-wideband
positioning [20]. Ultrasonic solutions, such as Cricket [17]
and Active Bat [22], provide precise centimeter resolution,
but require line-of-sight operation indoors. Therefore, they
require dense sensor installations for full coverage. Tech-
nologies that avoid issues of occlusion, such as WiFi triangu-
lation, suffer from multipath problems caused by reflections
in the environment. Thus, fingerprinting of the received sig-
nals can help overcome the multipath problem by leveraging
the multipath phenomenon [10]. Fingerprinting improves on
other means of estimation by taking into account the effects
that buildings, solid objects, or people may have on a wire-
less or RF signal, such as reflection and attenuation. Finger-

Figure 1. Floorplan and associated room-level, sub-room-level, and

grid-level labels of the space where tests were conducted. Only labeled

grid-points were surveyed. The signal injector was connected to an out-

let in the kitchen as marked. Note that it is not necessary to know the

layout of the in-wall electrical wiring. The only purpose of the wiring

is to radiate the signal used for fingerprinting throughout the space of

interest.

printing works by recording the characteristics of wireless
signals at a given position and later inferring that position
when a similar signature is seen again. A survey of signals
over some space allows for the creation of a map that can be
used to relate a signal fingerprint to a location.

EXPERIMENTAL SETUP
We conducted experiments using our prototype system in a
research laboratory designed to imitate a residential environ-
ment. The building contains two floors with identical floor-
plans, each with a kitchen, livingroom, two bedrooms, two
bathrooms, and an office. Although the facility appears to be
a home, it differs in two important ways from a typical home.
First, the facility contains a large number of computers and
other electronic devices, leading to a noisier RF environ-
ment than true residential spaces. Second, the facility was
constructed to meet industrial building codes, which require
electrical wiring to be surrounded by metal conduit. This
metal conduit, which can block the signals injected over the
powerlines from radiating as RF energy, is neither required
nor common in most residential construction. These fac-
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Figure 2. Equipment used to transmit and collect the amplitude of the wideband signal. The WiFi connection is used only to remotely control the

signal generator, and is not in any way used for localization.

tors mean that the performance of our system would likely
improve in a true residential environment, and that our re-
sults with WPLP would extend to other commercial indoor
spaces.

Grid Layout
Survey points consisted of 66 locations throughout the first
floor on a 0.9 by 0.9 meter grid, shown in Fig. 1. Each
point on the grid was identified by a letter (A-O) for the row
and a number (1-9) for the column. Occasionally, due to the
layout of the floor, surveyable points fell halfway between
major grid points. These points are designated by a ‘.5’
in the column number for a point falling halfway between
two columns, and a ‘+’ after a row letter for a point falling
halfway between two rows. Due to the size of the antenna
(1 m diameter) relative to the size of the grid, its orientation
at each point can be a significant factor. Data was obtained
at each of the 66 points with the antenna facing either north,
south, east, or west. One direction was used for each point,
and the same direction was used each time data was taken at
that point. Most points were sampled with the antenna fac-
ing north, although occasionally the placement of walls and
furniture dictated a different orientation.

Data Collection Equipment
To generate the signal that was injected into the powerlines,
we used an Agilent 33220A 20 MHz signal generator to
produce a 10 V peak-to-peak sine wave. Forty-four differ-
ent frequencies were used in total - 447 kHz, 448 kHz, 600
kHz, and 601 kHz (Patel et al. PLP-I frequencies), and 500
kHz to 20 MHz in 500 kHz steps. We were limited to 20
MHz and 10 Vpp by the capabilities of the signal genera-
tor. Also, it is important to note that the signal generator
expects a 50 Ω load, and will only properly generate a 10
Vpp sine wave when matched with such a load. Our ex-
periments have shown that the impedance of the powerline
varies by frequency, and is usually much higher than 50 Ω.
Therefore, the true voltage injected into the powerlines var-
ied between 2 Vpp and 9 Vpp depending on the frequency.
Although frequencies at which the powerline’s impedance
closely matches that of the signal generator will radiate more
energy, this will not affect our results as long as the power-

line impedance is relatively consistent. This should be the
case as long as there are no significant changes in the elec-
trical infrastructure of the space during the experiments.

The output of the signal generator was connected to a custom-
built powerline injector box which gave us the capability to
inject the signal on the hot and neutral, hot and ground, or
neutral and ground wires. To compare our results as closely
as possible with those of Patel et al. and PLP-I, we chose
to inject the signal on the hot and neutral wires. However,
work in progress suggests that using the metal conduit itself
to distribute the signal may prove more effective in industrial
environments.

The receiver consisted of an amplified broadband antenna,
a software radio, and a standard laptop computer. The an-
tenna, a Wellbrook Communications ALA-1530+ loop an-
tenna, had a range of 150 kHz - 30 MHz [1]. The software
radio, an Ettus Research Universal Software Radio Periph-
eral (USRP), contained a 64 MHz 12-bit analog-to-digital
converter to which the output of the antenna was connected
through a low-pass antialiasing filter. A large battery and a
power inverter were used to power the equipment in order to
both isolate it from the powerline and to make it electrically
similar to a battery-powered mobile tag.

All components of the receiver (laptop, antenna, and soft-
ware radio) were placed onto an electrically isolated plastic
cart to ensure no signal was coupled through the cart. The
signal generator and injector box were placed in the kitchen,
and remained stationary throughout the experiments. The
equipment setup is shown in Fig. 2.

Although we realize that the size and complexity of this ex-
perimental setup makes it impractical for a real-world de-
ployment, we nonetheless decided on the use of a broadband
antenna and software radio to allow rapid prototyping of a
variety of ideas. Our prototype has much more functional-
ity than necessary for a real-world system and can easily be
reduced in complexity. The design of a real-world deploy-
able prototype is not the contribution of this paper, however
we emphasize that it is possible and later describe how a de-
ployable version might be built.
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Figure 3. Localization accuracy for the two PLP-I frequencies, and

also the best and worst possible accuracies with two frequencies chosen

from the set of 44 that were tested. Sets of two frequencies generating

the best and worst accuracies were chosen independently for each of

the three localization granularities.

Experimental Procedure
When capturing data the cart was moved in succession to
each point on the grid (marked with tape on the floor), where
a marker placed on the cart was used to align it consistently
across data captures. For each frequency, a sample was taken
with the signal generator output both on and off, allowing us
to capture the ambient RF noise in the environment as well
as the signal we were transmitting. Samples were captured
using the software radio, which digitizes the raw signal com-
ing in off the antenna. The amplitude of the frequency of
interest was calculated from this raw signal using a Fourier
transform. To reduce the effect of any variation in the elec-
tronics of the software radio, we directly connected its input
to the ouput of the signal generator and performed a calibra-
tion before each survey.

The signal generator was controlled over a WiFi connection
(which operates well outside the frequency range of inter-
est for these experiments), allowing us to programmatically
adjust its output parameters and configure the generator to
output each of the 44 frequencies in sequence. The signal
generator and injector box were connected to an outlet in the
kitchen, illustrated in Fig. 1. Note that since we are using
a fingerprinting-based approach, it is not necessary to know
anything about the design or placement of the electrical in-
frastructure. The only purpose of the powerline is as a con-
duit to spread the signal used for fingerprinting throughout
the space of interest.

In this manner, a measurement of the amplitude of all 44 fre-
quencies was taken at each of the 66 grid points. Collection
of this data over the entire grid for one injection point took
approximately three hours. Six complete datasets were col-
lected over a two-month period, approximately every week.

REVISITING PLP-I RESULTS
This work began as an effort to examine the feasibility of
deploying PLP-I in commercial and industrial environments,
and so we began by attempting to reproduce the results of the
original system [16]. Since PLP-I consisted of two injectors
each transmitting a single unique frequency, we simulated it
by selecting two frequencies from the larger set of 44 that
were tested. To replicate the original system as closely as
possible, we began by selecting the original frequencies used
by PLP-I (447 kHz and 600 kHz). Note that although Patel
et al. utilized 33 kHz rather than 600 kHz, 33 kHz was out-
side the operating range of our antenna, and discussions with
the authors revealed that in subsequent experiments they had
switched to 600 kHz and obtained results similar to those
previously presented.

Another difference from PLP-I is that our experiments used
a single injection point, rather than two physically separated
injection points. Physically separating the injectors can serve
to add information useful to the classifier that may not be
present if both signals are transmitted from the same loca-
tion. A measure of the amount of additional information
provided by using a second frequency (over using just one
for classification) is the correlation between the amplitudes
of the two frequencies. In our case, the correlation between
447 kHz and 600 kHz ranged from 0.35 to 0.42. A corre-
lation of 1 indicates that the second frequency provides no
additional information, and a correlation of 0 means that the
two frequencies share no information. Patel et al. found
correlations between the two injectors ranging from 0.05 to
0.6. Our values thus fall within this range, and we there-
fore believe the use of a single injection point for multiple
frequencies serves as a valid comparison.

To evaluate the performance of PLP-I in our test environ-
ment, we took the amplitude data at 447 kHz and 600 kHz
captured at each of the 66 surveyed points, and used this data
to perform room-level, sub-room-level, and grid-level clas-
sification of a test dataset. The classification was performed
using the K-Nearest-Neighbors (KNN) method on the sig-
nal space using the received signal amplitudes. Thus, each
physical location on the grid (as shown in Fig. 1) had asso-
ciated with it the amplitude of the two signals (447 kHz and
600 kHz) as sensed at that parciular location, as well as the
symbolic label given to that grid point. Our test and train-
ing datasets were completely independent, captured several
hours apart. We used a K value of 1, which was found to
produce optimal results under these conditions. Room-level
accuracy ranged from 48.5% to 60% depending on which of
the two datasets was used for training and which was used
for testing, which is significantly lower than the 78%-100%
accuracy achieved by Patel et al. in their experiments. Sub-
room-level performance ranged from 39.4%-51.5%, again
much lower than the 87%-95% achieved in the original work.
The average of the two accuracies is shown in Fig. 3 for each
localization granularity.

The lower accuracies observed can be attributed to both am-
bient RF noise and the construction of the electrical infras-
tructure. As discussed earlier, although the layout of our test

97



Figure 4. Room-level localization accuracy using two frequencies for

each of the 1,892 possible combinations of two frequencies from the 44

that were tested. The diagonal represents no data since the injector can

not transmit two signals simultaneously on the same frequency. Note

the lack of any apparent pattern in the data, meaning that a formula for

selecting two frequencies a priori when designing an indoor localization

system is not possible.

environment appears to be that of a home, it is actually a lab-
oratory and as such was constructed according to commer-
cial building standards. Substantial ambient noise, possibly
caused by the large amount of electrical equipment operat-
ing within the test environment, was observed in the 400-
600 kHz range. This phenomenon was not observed in the
deployment of PLP-I in residential spaces. This may also be
due to the electrical wiring being deployed within metal con-
duit, as described earlier. Note that the hot and neutral wires
on which the signals are injected are completely contained
within this conduit, which can serve to reduce the amount of
signal radiated. The experiments conducted in PLP-I were
in homes with residential grade wiring without conduit.

Frequency Selection
Given these results, we decided to perform an exhaustive
search of all possible combinations of two frequencies from
the 44 that were captured to determine the best accuracy
achievable with two frequencies. The idea was that if a pair
of frequencies could be found that consistently provide the
best accuracy across each of the three classification granu-
larities, PLP-I could be adapted to use these frequencies in
commercial and industrial environments. The classification
was again done using the KNN method with a K value of 1.

The results of a room-level classification of each of the 66
samples taken throughout the floor are illustrated in Fig. 4
for all 1,892 possible combinations of frequencies. Lighter
pixels represent better accuracy, and the diagonal of black
pixels represents no data where the injector would be re-
quired to transmit the same frequency twice, which is impos-
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sible. The frequency scale starts with 447 kHz, 448 kHz, 500
kHz, 600 kHz, 601 kHz, 1 MHz, and continues in 0.5 MHz
steps to 20 MHz. The best possible room-level accuracy
was 87.88% (achieved with 447 kHz and 11.5 MHz), the
best sub-room-level accuracy was 83.33% (achieved with
8.5 MHz and 11 MHz), and the best grid-level accuracy
was 78.79% (achieved with 8.5 MHz and 9.0 MHz). These
results, along with those of the PLP-I frequencies and the
worst-case two frequncies, are summarized in Fig. 3.

This exhaustive search leads to two important results. First,
we see that significant improvements in accuracy can be made
simply by using frequencies other than the 447 kHz and 600
kHz signals used by PLP-I. Room-level accuracy improves
by 33.6%, sub-room-level accuracy by 37.9%, and grid-level
accuracy by 44.7% simply by using alternative frequencies.
The second result of this search is that the frequencies that
provide the best possible accuracy are not consistent across
the three classification granularities. Not only are they in-
consistent, but they also span most of the range tested, start-
ing with the lowest frequency tested of 447 kHz all the way
to 11 MHz. Additionally, Fig. 4 fails to demonstrate any
obvious pattern that would lead to a formula for a priori se-
lection of two frequencies to be used in a PLP localization
system.

Temporal Stability
For a fingerprinting-based localization system to work, the
fingerprint space must exhibit both temporal stability and
spatial differentiability. The previously discussed results,
with room-level accuracy of up to 88% for two frequen-
cies based on training and testing sets taken the same day,
demonstrate that the amplitude of these signals is indeed spa-
tially differentiable. We thus set out to examine both the sta-
bility of the signal amplitudes in time, as well as the effect
that any instability has on localization results.
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Note that numerous frequencies are above 2 dB in std. dev., which Fig.

5 shows will reduce localization accuracy to below 50%.

To understand the impact of any temporal instability in the
signal amplitudes, we ran tests for each dataset where the
original dataset was used for training, and a noisy version of
that same dataset was used as the subsequent testing set. The
noisy version was generated by adding independently gener-
ated samples of zero-mean Gaussian noise to the amplitude
of each of the PLP-I frequencies at each of the 66 physical
locations in the dataset. The impact of noise with standard
deviation ranging from 0 dB to 30 dB was examined, and is
shown in Fig. 5. The accuracies shown represent the mean
over 100 independent generations of the noisy dataset ver-
sions, as well as over all collected datasets. These results
show that with just 1 dB of noise, the localization accuracy
drops below 50% for all classification granularities when us-
ing the PLP-I frequencies of 447 kHz and 600 kHz.

The next question then is what amount of temporal insta-
bility in the signal amplitudes exists in the real-world. To
answer this, we took measurements over four separate 24-
hour periods at two physical locations. Approximately 950
samples at each of the 44 frequencies were obtained across
each 24-hour period. One of these locations was at point K5
on the grid, and the other was in our laboratory space. Dur-
ing these tests the cart containing the equipment remained
completely stationary, eliminating any change in signal am-
plitude that may be present in the datasets taken over the
entire grid due to inconsistent cart placement between mea-
surements. The results of these long-term tests are illustrated
in Fig. 6, which shows the mean standard deviation in am-
plitude at each of the 44 frequencies across the 24 hours of
each test.

Figure 6 leads to two important conclusions. First, the mean
standard deviation across all four tests and all 44 frequencies
is 1.17 dB, which is above the 1 dB that was determined ear-
lier to cause classifier accuracy to drop below 50%. Three
out of the four 24-hour periods had 21 frequencies with stan-
dard deviations above 1 dB, and one had 15 frequencies
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above 1 dB. Of these same tests, two had five frequencies
with standard deviations above 2 dB, one had six, and one
had three. Figure 5 shows that at 2 dB of standard deviation,
localization accuracy ranges from 25% to 35% depending
on localization granularity. Second, we see that although
some frequencies show low standard deviation (< 1 dB) in
one location, they may experience high standard deviation
(> 2 dB) in another location. Therefore, it is impossible to
select two frequencies that will produce consistently good
localization results over both time and space.

A real-world deployment will obviously last much longer
than the 24-hour tests we described, and will also suffer from
additional ‘noise’ due to inconsistent placement of the re-
ceiver between training and testing samples. To get an in-
dication of what real-world standard deviation in the signal
amplitude might look like, we calculated the same value as
before (standard deviation in amplitude at each of the 44 fre-
quencies) across all six datasets. These values are shown in
Fig. 7. Values were computed by finding the standard devia-
tion among the six amplitude samples at each frequency for
each of the 66 surveyed locations, and then taking the mean
over all 66 locations. For the six datasets we collected over
a two month period, the mean standard deviation in ampli-
tude across all 44 frequencies was 3.74 dB, and the minimum
was 2.16 dB. Recall that the localization accuracy of a two-
frequency system is less than 35% with noise of greater than
2 dB (shown in Fig. 5).

WIDEBAND PLP (WPLP)
Thusfar we have demonstrated that a general rule for selec-
tion of two frequencies for PLP does not seem to exist. Ad-
ditionally, even if the optimal two frequencies are selected
initially, their performance may degrade over time. We thus
set out to examine the effect of using additional frequencies
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Figure 8. Localization accuracy when the classifier is trained and tested

on independent datasets taken on the same day, several hours apart.

Accuracy is shown for the 44-frequency wideband signal as well as the

two-frequency PLP-I signal (447 kHz and 600 kHz) and the optimal

two frequencies from all possible combinations (as shown in Fig. 3) .

in the system. In this section, we demonstrate that the use
of a wideband signal consisting of signals at 44 distinct fre-
quencies not only improves initial localization accuracy, but
also better maintains that accuracy over time by mitigating
some of the effects of temporal instability in each of the con-
stituent signals.

Accuracy Improvements
The use of a 44-frequency wideband signal can significantly
improve localization accuracy. Figure 8 shows localization
performance for a training and testing set taken several hours
apart, which should yield excellent localization results since
changes in the physical environment that could affect the RF
signals will be minimal. However, as we saw earlier in Fig.
3, this is not necessarily the case when using only two fre-
quencies for localization. In fact, the PLP-I system achieves
only 54% room-level accuracy with 447 kHz and 600 kHz,
even for these relatively ideal conditions. A wideband sig-
nal provides additional features to the classifier, allowing it
to make better decisions. In this case, the wideband sig-
nal leads to 100% accuracy at room, sub-room, and grid
level. This represents a gain of 46% - 66% over the accuracy
achieved with the PLP-I frequencies. Figure 8 also shows
that even with the optimal selection of two frequencies (with
each of the three localization granularities having its opti-
mal frequencies selected independently), the wideband sig-
nal provides gains in accuracy of 12% - 21%.

Temporal Stability
Using a wideband signal for localization not only improves
initial performance of the system, but also helps maintain
that performance over time. Having observed the effect that
a wideband signal has on initial localization results, we set
out to quantify its effect on sensitivity to noise. Noise sen-
sitivity of the classifier was first shown in Fig. 5, which
presented results for a system utilizing the two PLP-I fre-
quencies of 447 kHz and 600 kHz. Figure 9 illustrates this
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information for the 44-frequency wideband signal. As be-
fore, this information was obtained by adding independently
generated zero-mean Gaussian noise samples with varying
standard deviation to the amplitude of each of the 44 fre-
quencies sampled at each of the 66 datapoints. The classifier
was then trained on the initial dataset, and tested on the noisy
version of that same dataset. Figure 9 represents the mean
over 100 independent generations of a noisy version of all
six datasets.

Figure 9 shows that a wideband signal is capable of tolerat-
ing noise of up to 5 dB in standard deviation before classifier
accuracy drops below 100%. In contrast, Fig. 5 demon-
strates that the PLP-I two-frequency signal has accuracy of
less than 25% for all localization granularities at this level of
noise. In addition, Fig. 9 shows that as the noise increases,
classifier accuracy degrades much more gracefully than in
the PLP-I two-frequency signal.

With results showing that a wideband signal can improve
temporal stability by increasing the noise tolerance of the
classifier, we now discuss the results of a real-world ex-
periment with a 44-frequency wideband signal for training
and testing data taken two months apart. The results for the
two-frequency PLP-I signal, the optimal two frequency sig-
nal (with optimal selection being independent for each level
of localization granularity), and the 44-frequency wideband
signal are shown in Fig. 10. Two important effects can be
observed here, and in Fig. 11, which illustrates the decrease
in performance for each of the three types of signals from
initial deployment (Fig. 8) to two months later (Fig. 10).
First, although a two-month temporal separation between
training and testing data has reduced the accuracy of the 44-
frequency wideband signal to 59% - 91% depending on the
localization granularity, it has maintained significantly better
accuracy than either the two-frequency PLP-I signal or the
optimal two-frequency signals across all three localization
granularities. Second, the decrease in performance with the
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Figure 10. Localization accuracy when the classifier is trained and

tested on independent datasets taken two months apart. Accuracy is

shown for the two-frequency PLP-I signal (447 kHz and 600 kHz), the

optimal two frequencies from all possible combinations, and the 44-

frequency wideband signal.

44-frequency wideband signal for all localization granular-
ites (except grid-level) is lower than with the two-frequency
PLP-I signal and the two-frequency optimal signal. Thus,
not only does a wideband signal deliver better initial accu-
racy, it also serves to better maintain that accuracy over time.

The data discussed thus far is based on the comparison of
three independently collected datasets - two separated by
several hours, and one separated from the initial set by two
months. The earliest dataset has been used as the training set,
which simulates the initial site survey necessary upon de-
ployment of a fingerprinting-based localization system. Over
the two-month period, we collected three additional datasets
in the interim. Using these interim datasets as additional
testing data for a classifier trained on the initial site-survey
can provide insight into how localization accuracy degrades
over time, and is shown in Fig. 12. The interesting result
here is that there does not appear to be a pattern in accuracy
degradation over the two-month period as time increases.
It appears that any significant temporal separation between
training and testing datasets will degrade accuracy, but that
accuracy degradation is not necessarily correlated with in-
creasing time after a point.

Wideband Signal Size
Evidence clearly shows the benefit of the wideband signal
over a two-frequency signal, although it is unclear if a wide-
band signal with fewer than 44 constituent frequencies may
provide the same accuracy. Using the fewest number of sig-
nals possible to obtain the demonstrated benefits of a wide-
band signal is desirable since additional frequencies may in-
crease the cost, complexity, and size of receivers designed
for a real-world practical localization system based on the
wideband approach.

Figure 11. Classifier performance degradation between closely tempo-

rally spaced training and testing data (several hours), and a two-month

separation between training and testing data. Red bars represent the

localization accuracy after two-months, and the combined red and gray

bars represent the initial localization accuracy soon after deployment

(the closely spaced training and testing data). A 44-frequency wide-

band signal shows both better initial accuracy and reduced accuracy

degradation over time.

To determine the effect of additional frequencies on localiza-
tion performance, we examined the performance of a wide-
band signal ranging in size from five frequencies all the way
to the complete set of 44 frequencies on the two-month sep-
arated datasets. Since a key benefit of the use of a wideband
signal is resistance to performance degradation over time,
examining the two-month separated data makes more sense
than the datasets captured closer together in time. To de-
termine the order in which frequencies were added to the
signal, they were ranked in order of decreasing signal-to-
noise ratio (SNR) based upon the training dataset. Although
other orderings could be used, and may produce different re-
sults, the problem space is too large to perform an exhaustive
analysis. Adding frequencies by decreasing SNR is a logi-
cal approach since frequencies closer to the ambient noise
level are more likely to be affected by noise, and will thus
have a higher standard deviation in amplitude. Recall Figs.
5 and 9, which showed that this adversely affects localiza-
tion performance. Frequencies with higher SNR’s will thus
likely provide better localization accuracy. Localization ac-
curacies for the wideband signal ranging in size from five
to 44 frequencies are shown in Fig. 13. The general trend
is that the use of additional frequencies provides additional
localization accuracy, although it appears that the marginal
utility of each additional frequency begins to decrease past
35 frequencies.

DESIGNING A DEPLOYABLE SYSTEM
While our initial experimental platform consists of a rela-
tively complex and expensive set of test equipment, the flex-
ibility of this equipment is desirable for the testing and rapid
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Figure 12. Localization accuracy vs. number of days separation be-

tween the training and testing data for a 44-frequency wideband signal.

Accuracy does not seem to continually decrease over the two-month pe-

riod, although an initial decrease in accuracy with any time separation

between training and testing data is apparent.

prototyping of new configurations of PLP variants. Once
we have established the feasibility of a specific system con-
figuration using the test apparatus, we can then design spe-
cial purpose hardware and software that is optimized for a
specific set of operating parameters, including the desired
operating frequency range, injector transmission levels, and
receiver dynamic range and selectivity.

Interference with other wireless devices is a potential con-
cern with WPLP. Wired power line communication systems
operate within the frequency band of interest for WPLP, as
well as various other wireless services such as amateur ra-
dio. Since WPLP uses a number of frequencies, the system
could overcome potential interference issues by continually
sensing for other users of the various frequencies and adapt-
ing its frequency set in real-time. This method has been used
successfuly with power line communication systems, which
emit unintentional radiation from the power lines.

A candidate design could leverage several technologies to
achieve good wideband performance at modest cost and com-
plexity, as well as low power consumption for the PLP re-
ceiver. Having demonstrated the value of a 44 frequency
wideband signal, we now present a possible design for a
practical wideband-capable receiver.

Injector: Single Chip Direct Digital Synthesis
In our experimental apparatus, the injector system employs
an Agilent 33220A signal generator, which is based on an
arbitrary waveform generator architecture where a time se-
ries of arbitrary output voltages is played back from a large
internal memory. In our implementation, however, we are
not using the full arbitrary waveform generation capabili-
ties of this generator as the injector transmits only 1 of 44
frequencies at a time. In a practically deployable implemen-
tation of the wideband solution, a single chip direct digital
synthesizer could be employed to generate frequency agile
single excitation tones. The Analog Devices AD9834, for
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Figure 13. Localization accuracy vs. number of frequencies in the

wideband signal when trained and tested on data separated by two

months. The use of additional frequencies provides additional features

for the classifier and generally improves accuracy. Frequencies were

added from the set of 44 in order of decreasing signal-to-noise ratio

(SNR).

example, is capable of generating tones at frequencies rang-
ing from near-DC to 37.5 MHz. This IC may be controlled
by a simple 8-bit microcontroller programmed to generate a
sequence of injection tones as required. A high-speed opera-
tional amplifier would be required to amplify the AD9834’s
0.8 V output signal to the 10 V output signal we employed
in our tests.

Receiver: Single Chip Superheterodyne Receiver
In our experimental apparatus, the receiver system employs a
large broadband receiving loop antenna connected to a soft-
ware radio development system (USRP) which is in turn
connected to an ordinary laptop computer which performs
some of the signal processing tasks required. This combi-
nation of components was chosen for flexibility and high
performance, but it consumes a great deal of power and is
physically very large. In a practical wideband receiver, a
single chip superheterodyne receiver such as the NXP (for-
merly Philips) TEA5757 contains on a single chip all of
the receiver functions needed for measuring the amplitude
of incoming signals from 144 kHz to 30 MHz. In opera-
tion, this IC consumes 18 mA at 2.5 V, or 45 mW, which
is about half the power consumption of a typical Bluetooth
transceiver implementation. A microcontroller would be re-
quired to configure the receiver IC to various frequencies.
The real challenge for the production of a small WPLP tag
is the development of a small but sensitive magnetic field
antenna to receive the incident signals from the power line
without requiring a large shielded loop. Initial tests show
that an untuned ferrite rod antenna holds promise for this
application.

FUTURE WORK
Although we believe the work presented here represents a
significant result in the space of fingerprinting-based indoor
localization, many opportunities exist for future work. First,
this work began as an attempt to make PLP-I operate in noisy
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commercial and industrial spaces. While we have achieved
that goal in the tested space, performance of WPLP needs
to be examined in other spaces. Second, although Fig. 13
seems to demonstrate diminishing returns for further expan-
sion of the wideband signal beyond 44 frequencies, the data
is by no means conclusive and we believe it would be ben-
eficial to examine larger wideband signals, as well as wide-
band signals using other areas of the spectrum, such as the
GHz region used for WiFi localization. Finally, we believe
this work presents opportunities for investigation of alterna-
tive machine learning techniques, particularly support vector
machines.

CONCLUSION
In this work we have shown that fingerprinting-based local-
ization systems are susceptible to accuracy degradation over
time due to variability in the fingerprint. For a system such
as PLP whose fingerprint is the amplitude of a limited num-
ber of RF signals, this variability comes in the form of ambi-
ent RF noise as well as changes over time in the transmitting
and receiving hardware. We then showed that the use of a
wideband signal consisting of the amplitudes of 44 differ-
ent frequencies ranging from 447 kHz to 20 MHz can both
improve the initial post-deployment accuracy of the system,
and also mitigate some performance degradation over time.
We also show that, at least up to the maximum of 44 fre-
quencies tested, increasing the size of the wideband signal
fingerprint serves to reduce accuracy degradation over time.

Although our testing apparatus is clearly not designed with a
deployable system in mind due to its large size, this does not
make the results presented here uninteresting. A real-world
system which takes advantage of the wideband concept can
easily be designed with off-the-shelf components in the fu-
ture.
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