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Abstract: Rich, structured annotations of video recordings enable interesting 
uses, but existing techniques for manual, and even semi-automated, tagging can 
be too time-consuming.  We present in this paper the ContextCam, a prototype 
of a consumer video camera that provides point of capture annotation of time, 
location, person presence and event information associated to recorded video.  
Both low- and high-level metadata are discovered via a variety of sensing and 
active tagging techniques, as well as through the application of machine 
learning techniques that use past annotations to suggest metadata for the current 
recordings.  Furthermore, the ContextCam provides users with a minimally 
intrusive interface for correcting predicted high-level metadata during video 
recording. 

1  Introduction 

An ambition of ubiquitous computing is to create services that perform some of the 
important yet mundane activities that we would like to do, but do not have the 
patience or time to perform. One of those tasks is annotation, indicating the salient 
pieces of information that describe a situation for future reference. A richly annotated 
family history —pictures, movies, physical artifacts all accompanied by descriptions 
and narrative that describe their significance— could provide a variety of entertaining 
and valuable services, but we rarely have the time to do the annotation. There is an 
opportunity for technology to perform the annotation on behalf of the user. 

What would it take to have the ability today to record live events and tag them at 
the point of capture with metadata that can be preserved and aid in review?  We 
present a solution to this problem for live video, called the ContextCam.  We 
developed the ContextCam to solve a problem of simplified annotation of home 
movies, motivated by a previous mainly manual annotation system we built call the 
Family Video Archive (FVA) [1], and shown in Figure 1. As we will show, 
annotation of home movies provides a very meaningful way to share large archives of 
family history, but only when metadata describing when, where, who and what 
activity is taking place is added.  Although this data can be added manually, as our 
previous work demonstrated, the real challenge is to automate as much of this tedious 
task as possible. 
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In this paper, we describe how the management of home movies motivated the 
development of the ContextCam, and discuss related work on automated annotation 
of digital memories. We then describe the prototype ContextCam device, a digital 
video recording device with a collection of sensing techniques to annotate video with 
information concerning when and where the video is being recorded and, more 
importantly, who is in and around the field of view of the camera.  This latter 
metadata is accomplished through an active tagging technique. We then show how the 
low level metadata for who, where and when can be used to infer higher level 
information with a Bayesian prediction technique that supports a manual technique 
for assigning higher-level semantic tags to a scene while recording.  We also present 
the user interaction with the ContextCam that integrates the point of capture 
annotation with the regular use of the augmented video camera.  Although the 
ContextCam was designed specifically to address an opportunity for home movies, its 
application extends that entertainment motivation. 

 

Figure 1: Manual tagging interface for the Family Video Archive [1]. 
 
 

2 Motivation: A Semi-automated Family Video Annotation System 

Historically, families have recorded their history using visual aids such as paintings, 
photographs or videos.  With digital technologies for photography and videography, 
the storage and manipulation of family history is easier than it has ever been. In 
addition, families are even beginning to convert old 8mm and VHS films into a digital 
form. Although tools exist to organize and share digital photographs, the only tools 
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available for digital video are ones for nonlinear editing of video sequences.  Despite 
the increasing relative ease of recording and editing family movies, archiving and 
retrieving them is not quite as effortless.  For instance, consider the overwhelming 
task of finding and creating a video compilation of a family’s Christmas scenes from 
the past 20 years.  This would be a wonderful gift to share with loved ones, but it is 
often a very time-consuming task to assemble the individually recorded video 
snippets into a complete presentation.  We earlier designed a system, the Family 
Video Archive, that supports the manual annotation and browsing of a large collection 
of home movies [1].  Motivated by PhotoMesa’s [3] zooming interface for browsing 
digital photographs, the system provides a flexible semantic zooming interface for 
browsing and filtering the collection of user-defined scenes. Related scenes can be 
grouped into albums and exported out of the system, either as input to a nonlinear 
video-editing suite or as an independent DVD with menus and navigation.  These 
browsing and authoring features will not be described in any further detail in this 
paper.  Instead, we focus on the annotation features of our system, the foundation for 
any of these browsing and authoring capabilities. 

2.1  Annotating Home Video 

In our earlier home video annotation system (see Figure 1), users import video files 
into the system by dragging them into the video files browser in the lower left corner 
of the interface. Users view video in the video playback panel using a VCR style 
control interface.  A timeline indicates the user-defined scene boundaries within any 
given video file (there is no assumption that video files contain single scene 
information).  Using a simple frame-by-frame color histogram comparison, the 
system suggests scene boundaries that the user can accept, modify or remove. 

The interface provides a variety of ways to attach metadata to a video scene, and 
the accumulated metadata is shown in the top middle section of the interface. Date, 
freeform text, and user-defined metadata tags are possible annotations within this 
system.  Although the metadata categories are completely user-defined and form a 
potentially complex hierarchical network, we expect that in any home video archive 
three major categories of interest will emerge:  Who is in the scene, Where that scene 
is and what Event is depicted in the scene.  There are a few ways to associate a 
metadata tag to a video scene, the simplest being to drag the tag from the hierarchy on 
the right of the interface to the video window.  

The freeform text window at the top of the interface is a quick way to associate 
arbitrary text to video scenes, making it a convenient interface when people are 
talking aloud about the video during a family gathering. As we describe next, this 
freeform text can be used to help accelerate assignment of metadata tags to a scene. 

2.2  The Need to Improve Annotation Efficiency 

Our experience with managing home video motivates the automatic annotation of 
who, what, when, where at the point of capture. Rich and accurate metadata is the key 
to managing a large video archive. As video content and potential tags grow, it 
becomes increasingly time consuming to annotate video scenes.  Recognizing the 
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trade-off between time and richness of annotation, we designed features available in 
our original system to speed up annotation without sacrificing correctness.  First, the 
semi-automatic scene detection mentioned earlier can save considerable time by 
inferring scene changes, but can vary with the quality of the video recording.  Second, 
the application matches the free-form text description against the names of metadata 
tags, placing suggested tags in a separate part of the annotation interface.  The tag 
suggestion window contains far fewer tags than the tagging hierarchy window making 
it easier to find appropriate tags.  A prioritization function places more likely tag 
candidates near the top of the list to make things even easier. Third, the same tag can 
be assigned to multiple scenes.  Often, when viewing some scenes, a user suddenly 
becomes aware of a new piece of information (e.g. a new person is identified or the 
location is clarified) that applies to several of the preceding scenes. Rather than 
requiring users to load each of those scenes and add the new annotation, users can 
apply this new tag to all of them simultaneously.  Fourth, multiple tags can be 
assigned to a scene simultaneously by dragging a branch from the tagging hierarchy.  
For example, dragging the “My Family” category over a scene assigns every person 
under that category to that scene. 

Despite these accelerators for annotation, users still require a large amount of time 
to do the annotation properly.  We observed an expert (both with the video content 
and the annotation interface) using the annotation interface for one hour.  In that time, 
he was able to annotate 30 minutes of video, using 255 metadata tags (54 unique 
ones), free form text, and date stamps.  We identify the manual annotations in 
increasing order of occurrence per video scene: 

 
• Time/Date: Time information is usually just specified once in a scene. 
• Event:  Scenes typically depict only a small number of events (usually just 

one) but there may be sub events within a video scene that a user wants to tag. 
• Location: Location is typically assigned once in a scene but a variety of 

higher-level location tags may be assigned if the location is hard to determine 
or unfamiliar. 

• People: There may be many people in a scene and the user may need to view 
all of the video to account for everyone. 

 
Much of the tagging overhead is due to the user actually viewing and reviewing 

various segments of the video to acquire enough context information to make tagging 
decisions.  From our case study, two-thirds (40 minutes) of the whole annotation time 
consisted of video playback and navigation.  The overhead of physically searching 
and selecting tags accounts for the rest of the annotation time.    

Annotation at the point of capture can potentially eliminate time, location and 
people tagging. The only annotation that remains is event information, which we will 
show can be inferred based on current time, location, people and past annotations. 
The problem of losing or forgetting important information because of retrospective 
manual tagging further motivates the point of capture approach.  Manual tagging 
heavily relies on recalling and recognizing past events that may have faded from 
memory.   
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3  Related Work 

The proliferation of digital artifacts, such as photographs and videos, has motivated 
many researchers and companies to address the general problem of collecting, 
organizing and browsing memories. Much work has been done for digital 
photographs, including automated methods for organizing based on feature analysis of 
the images [11, 19, 27], visualization strategies [2, 3, 13, 14, 21, 24, 28] and 
annotation techniques similar to what we described in the previous section [7, 16].  
Other useful research (e.g. CMU’s Informedia Project [30]) and commercial (e.g., the 
VideoLogger from Virage [29]) tools show the promise of tools to browse and search 
digital video libraries.   

However, there is still little work in automatically generating annotations for 
videos and some of the techniques used in automated photograph annotation do not 
easily extend to video.  We identify four different annotation approaches. 
 
Low-level semantic detection: Automated techniques exist for doing keyframe 
extraction and scene boundary detection [12], and many of these assume high-quality, 
structured video and/or textual metadata.  These techniques provide little to no higher-
level semantic meaning.  Although possible with photographs, analyzing content of 
video is a much more computationally expensive task.  Video annotation 
environments have been developed for detailed analysis of audiovisual data as well 
[8].  Researchers in linguistics and film studies perform fine-grained analysis of 
audiovisual data and tools like Anvil and IBM’s VideoAnnEx support this kind of 
analysis [15, 30]. 
 
Manual annotation: Systems that provide manual annotation of high-level semantics 
for home videos are beginning to emerge [1, 4, 7].  These systems typically feature an 
interface where users can manually enter metadata as they review the video.  In 
addition, television broadcasts are typically manually scripted and often synchronized 
with closed captioning. 
 
Context acquisition at time of capture: Researchers are also now looking at point of 
capture tagging of photographs by sensing context information from standalone 
digital cameras and integrated camera phones [9, 27].  This usually consists of time 
and location stamping. In addition to spatio-temporal metadata, we are looking to add 
information about the people in the view of the camera (and nearby but not in the 
field of view) and to infer event information. 
 
Predictive annotation: The Garage Cinema research group at UC Berkeley has 
recently produced a prototype point of capture system for camera phones [27].  Time 
and location information (at a very coarse level) are captured on camera phones and 
submitted to a network-based prediction algorithm that provides a web interface to 
select higher level semantic information that is used to feed a prediction system.  Our 
motivation aligns with the work of theirs, which advocates very strongly the need to 
consider annotation at the point of capture.  In addition to working with video as 
opposed to digital still imagery, we are also distinguished from this previous work 
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because we do not assume a network-based interaction for higher-level semantic 
annotation in our approach to the ContextCam. 
 
 

 

 
Figure 2: The ContextCam and its sensing features. 

4  Low-Level Point of Capture Information for Annotation 

Figure 2 shows the ContextCam prototype and some of its context sensing features. 
This original prototype is a modified Pentium-III laptop with camera and sensors 
mounted behind a viewing display.  The software running on the ContextCam uses 
the Java Media Framework (JMF) for video capture and access.  This prototype was 
designed as a proof of concept of the underlying technologies.  In this section, we 
describe all of the sensing capabilities of the ContextCam that relate to simple, 
unambiguous metadata that can be associated to recorded video.  In the next section, 
we demonstrate how this low-level context information, combined with past 
annotations, helps infer high-level semantic metadata. 
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4.1  When a Video Scene Is Recorded 

The date and time of recording are fundamental and straightforward metadata to 
associate at the point of capture. Though many camcorders actually record date and 
time, most capture software does not access or preserve that information.  The 
ContextCam acquires date and time information from an internal clock as well as 
from GPS satellites. As we will discuss later, this metadata is then encoded in the 
video itself for later extraction in our annotation/browsing environment. 

4.2  Where a Video Is Recorded 

To annotate low-level location information, the ContextCam uses a multi-channel 
assisted-GPS (A-GPS) receiver from a Motorola iDEN i730 handset.  The assisted 
GPS systems provide slightly better accuracy and reliability than standard GPS 
receivers.  We were able to get fixes where a traditional GPS receiver could not, such 
as some indoor locations and near windows.  The GPS provides raw latitude/longitude 
coordinates and is stored as metadata in the video stream, which is also converted and 
stored as higher-level semantic tags.  However, there are many cases where the 
ContextCam cannot get a clear fix.  We address this limitation by using cached 
location fixes from the cellular network.  Although not as accurate, this still provides 
at least city level location information. 

GPS and cached fixes do not provide information to distinguish between indoor or 
outdoor shots.  Researchers have classified indoor and outdoor locations in 
photographs using color and texture analysis [19].  Because the ContextCam is 
present in the environment at the point of capture, it can sense whether it is indoors or 
outdoors directly.  We use the reflection of an ultrasound chirp sent vertically up from 
the camera to determine if it is indoors.  The ultrasound ranger is tuned to about 50 
feet, so the lack of a reflection indicates outdoors and any detection indicates an 
indoor location.  Although this solution does not work everywhere, it works for most 
situations.  We considered other approaches such as 60 Hz artificial light detection, 
but found this ultrasonic solution was better. 

4.3  Who Is in or Around the Field of View 

One of the most time consuming tasks of manual annotations is tagging all of the 
people appearing in a scene.  From our observation, this accounts for 75% of the 
annotation process.  Retrospective tagging of people in a scene is very slow and does 
not guarantee that everyone will be recognized.  Though the FVA annotation interface 
provides the ability to indicate exactly when within a scene a particular person was 
present, it is far too tedious to add this information, so the default setting is individual 
being “in” the video for the duration of a scene.  Because knowing who is in a scene 
is important, we designed the ContextCam to provide a solution that can quickly and 
accurately determine this information.  As an added bonus, our solution allows us to 
annotate who is nearby a scene but not in the field of view, something that is difficult 
to know when annotating retrospectively. 
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For accuracy and reliability we explore an active tagging approach for detecting 
people in or around the field of view of the camera.  However, we considered passive 
techniques first. Computer vision would be computationally expensive and unreliable, 
being further complicated by relatively low quality images and occlusions that are 
part of home videos.  Furthermore, a vision solution would only ever be able to 
determine people within the field of view of the camera, and we see an opportunity to 
sense people outside the field of view as well. Sound detection techniques would be 
even less appropriate for constant tracking of people.  Passive tagging techniques, 
such as some forms of RF ID, would not be practical because of the range limitation 
for reading tags and the lack of precision for distinguishing tags within and outside 
the field of view.  

We envision people who are part of a captured event wearing or carrying a small 
active token.  The active tag is used to gather information about their position in 
relation to the camera (in its view or somewhere near it).  These tags are low power 
and small enough to integrate into something that an individual is likely to wear, such 
as jewelry, or carry, such as a cellphone. Our current prototype tags are bulky and 
inappropriate for deployment (see Figure 3), but there is no inherent reason why they 
could not be designed to a more appealing form factor. 

 
 

           
Figure 3: An active tag used to determine individuals in the view of the camera.  A 
production tag could be much smaller and aesthetically pleasing. 

 
We explored a variety of active tagging techniques such as Infrared (IR) and radio 

frequencies (RF).  IR is typically limited to short range and is difficult to triangulate 
at longer ranges.  IR is also susceptible to occlusions and is greatly affected by 
ambient light.  RF, on the other hand, is not as completely affected by occlusions and 
generally provides long-range communication, but RF triangulation is prone to 
reflections and other conditions which limit its resolution and accuracy.  Despite these 
drawbacks, RF is a good solution to detect people who are near or around the camera. 

We chose an ultrasonic time of flight system for our location information.  
Ultrasound does not provide long-range communication like RF, but it provides very 
accurate location and position information. Although it also can suffer somewhat 
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from occlusion and multi-path complications, for our needs, we found that it is the 
best compromise between range and accuracy. 

Partly inspired by MIT’s Cricket [22, 23] and other location systems in the 
literature [10, 31], we use ultrasound to triangulate position of active tags around the 
camera.  Each tag periodically chirps an ultrasound sequence and two ultrasound 
receivers mounted on the camera detect these chirps and calculate the relative 
distance between the tag and the receivers.  The farther apart the receivers on the 
camera are, the finer the location resolution.  For our prototype, we place the 
ultrasound receivers 6 inches apart, which yields position accuracy within 1 foot. 

The ultrasound emitters on the active tags operate at 40 kHz, though less audible 
higher frequency emitters can be used.  They are tuned to operate at ranges up to 50 
feet.  A higher-powered emitter could also be used for longer-range applications.  A 
300 MHz TE 99 Ming RF module accompanies the ultrasonic emitter on the tag.  A 
single active tag emit cycle consists of a RF ping, followed by 5 ultrasound chirps.  
The RF ping, which consists of a 32 bit unique identifier, synchronizes the clock to 
the time the flight of the ultrasound chirp.  Five ultrasound chirps spaced 10 ms apart 
follow the initial ping.  The active tag continuously emits the RF/US sequence and 
draws at most 50 mA, which lasts about a day on a pair of 1.5-volt lithium ion cell 
batteries. 

We place two ultrasound receivers on a horizontal plane in front of the camera.  
The cone shaped bases help direct the ultrasound chirp towards the receiver, 
increasing the likelihood of detection.  For our prototype, we only focus on the 
azimuth angle.  We assume people in the view of the camera would likely be on the 
sample relative plane as the camera, so the elevation angles would be negligible 
especially as the distance between the tag and the camera increases.  Based on the 
camera’s zoom level, we compare the azimuth with the camera view angle to 
determine if the tag is in the view of the camera. 

The ContextCam also captures who is near or around the camera by simply storing 
the RF pings.  This is important for detecting people who are at an event, but not the 
prime focus of the situation. 

The biggest concern with our choice of an active tagging scheme is one of practical 
deployment.  Active tagging enables effortless detailed annotation of people and 
objects in or around the camera.  However, the problem with active tagging is the 
willingness of someone to actually distribute tags to individuals before capturing an 
event.  Privacy problems also arise from an active tagging scheme.  We can imagine 
that in the future each individual will wear or carry some sort of ubiquitous token.  
However, there are some motivating reasons why active tagging is a practical option 
for the ContextCam today.  Researchers have already been able to successfully 
deployed large number of tracking or identification tags at events like conferences [5, 
20]. 

Though “spur of the moment” situations would not work well with an active 
tagging scheme, most home videos depict settings or events that are known in 
advance, so “active tagging” one’s whole family before recording is possible.  The 
willingness to go through the trouble of distributing these tags comes down to the 
perceived cost-benefit for the user.  As we have indicated, annotating the presence of 
individuals is the most time-consuming task, especially for large events like a family 
reunion or graduation.  Taking 10 minutes to register and distribute the active tags 
may be a much better option than spending 2 hours to annotate a one-hour video.  
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Additionally, the active tags can be integrated into existing personal services like a 
cellphone or a Child Guard (a device that detects when a child wanders too far). 

Another concern with active tagging is privacy.  The active tags can allow users to 
opt-out by simply turning the device off or removing it if they do not feel comfortable 
being tracked on or around the camera.  The ContextCam can provide a mechanism 
for individuals to opt-out of particular scenes, which is not possible with traditional 
videography.  Although the individuals are still resident in the scene, there is an 
explicit indication in video metadata about their desire to opt-out. 

5  Higher-Level Point of Capture Annotation 

The metadata produced by the ContextCam at the point of capture is relatively low-
level, which implies that some of the information is not directly beneficial to the user.  
High-level semantic metadata, the information produced manually in our previous 
annotation system, has more relevant meaning to the user.  A tradeoff emerges 
between these two levels.  Automatically captured low-level metadata tends to be 
very accurate.  On the other hand, high-level semantic information is valuable, but 
introduces potential errors when automatically inferred.  With manual annotation, the 
opposite is true. Whereas humans are good at identifying higher-level meaning and 
can do it rather quickly, detailed annotation of low-level information (time of day for 
a scene, when a person comes in and out of a scene) is particularly error prone. We 
show here how the low-level metadata from the point of capture can be translated 
and/or used to infer other higher-level semantic metadata.  We also explore in the next 
section a way to help close this semantic gap with minimal human intervention. 

5.1  Other Time Information 

High-level time and date information is relatively straightforward to produce.  Most 
common time and date semantics can simply be translated without any sophisticated 
inference scheme.  For instance, the ContextCam determines holidays and seasons by 
simply looking at the timestamp and some calendar information.  In this case the 
high-level semantic metadata is very accurate. 

5.2  Inferring More Meaningful Location 

The ContextCam produces raw latitude/longitude position coordinates for location 
information, which is indecipherable by the user.  To extract more high-level 
meaning, we use a publicly available Geographic Information System (GIS) resource 
to determine the address.  From this information, we retrieve street names, city, state, 
and sometimes landmarks.  When used indoors, the ContextCam retrieves city and 
state information using the cellular network. And if we wanted to expend the effort, 
the same active tagging scheme could be used to tag indoor locations that could then 
be recognized automatically by the ContextCam.  Cities and states are adequate for 
many high-level semantic tags, though there are even higher-level tags that may be 
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more appropriate such as “Disney World” or “Grand Canyon.”  Many of these higher 
level location tags can be inferred using the same technique we will show for 
inferring events.  

The ContextCam’s indoor/outdoor recognizer provides added information to help 
infer location and event based on other context information and past annotations.  
Though not directly valuable to the user, this information can play an important role 
in predicting annotations. 

5.3  Inferring Event Information 

Event information refers to what a particular video scene is about or what is being 
depicted within the scene, such as a birthday celebration, Christmas party, graduation, 
family reunion, basketball game, etc.  Event information poses the most problems 
with automated annotation, since it typically consists of purely high-level semantic 
information that is almost impossible to detect directly with just sensors.  However, 
event information can be inferred from the other context information and higher level 
semantics such as time, location, and people.  For instance, we can infer a child’s 
birthday party from the date, the fact that the child is of prime focus, and the people 
around, such as friends. All this information can be gathered with the ContextCam.  
The inference system becomes even more powerful when users validate or confirm 
the predicted event formation at the time of capture.  Although event tags do not 
completely dominate the video annotation process, inferring and suggesting event tags 
can help alleviate some of the burden of manually searching and tagging from a large 
event tag hierarchy. 

For the ContextCam we use a naïve Bayesian classifier to help infer higher-level 
event information based on the low-level context information gathered at the time of 
capture and verified past annotations.  The information used for inferring includes the 
time, date, location attributes of a scene, and the people in and around the camera. 
Studies comparing classification algorithms have found the naïve Bayesian classifier 
to be comparable in performance with classification trees and neural network 
classifiers [17].  They also have exhibited high accuracy and speed when applied to 
large databases.  The naïve Bayesian classifier is a statistical classifier. Given a scene 
and its current annotations, it can find the most probable high-level class that is 
consistent with the relative frequencies of past annotations and context attributes. 

The root event node of the classifier represents the “class” of tags that the predictor 
tries to classify.  A user-defined threshold determines the acceptance of inferred tags.  
Since the classifier determines the probabilities of all classes, there may be multiple 
tags that are inferred for a particular scene as long as the confidence is over the 
specified threshold. 

The Bayesian classifier starts out with a minimal training set, but every time any 
scene is automatically annotated and appropriate event tags associated at the time of 
capture, a new entry is placed in the training set (stored as probability condition 
matrices on the camera).  Thus the training set can grow fairly rapidly with just a few 
captured events.  We tested the predictor using the case study archive mentioned 
above, which consists of 12 years (approx 12 hours) of video manually annotated with 
who, what, when, and where metadata.  In the experiment, each test case represented 
one year from our case study archive, and the training set consisted of the one, two, 
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and three years preceding the tested year.  We purposely chose one year chunks 
because most of the events in the archive were yearly (such as birthdays and 
reunions). Each year roughly included an equivalent number of who, what, when, and 
where (approximately 50 scenes per year and 400 tags in our case).  Table 1 shows 
the prediction accuracy for the three cases.  Our data suggests that one year of 
annotation data would be sufficient to produce fairly accurate predictions, requiring 
only three top suggestions to cover 95% of all cases.  Taking more years (over 2 years 
in our case) into consideration actually hurts the accuracies, because family dynamics 
change over time.  For example, family activities may change as a result of the 
addition of new family members, moving to a new home, and children growing up.  
However, an inference scheme that takes these potential changes into consideration so 
that more preceding years can be used in the predictor could be developed. 

The accuracies shown in Table 1 do not take into account all the rich metadata that 
the ContextCam provides. Rather, it provides a baseline performance for simple user 
specified metadata.  We suspect an actual long-term use (1-2 years) of the 
ContextCam will provide even better results, but we have not validated that claim. 

 

Table 1: Accuracy of a naïve Bayesian classifier used to predict event tags.  Each 
year consisted of approximately 50 user defined scenes with 400 metadata tags. 

Number of directly preceding 
years used for training 

Prediction 
accuracy 

Number of event tags 
representing 95% confidence 

79.6% 3.2 

2 years 80.3% 2.8 

3 years 80.1% 2.9 

1 year 

6  Storing the Metadata: Embedding Metadata into Video Frames 

Storage of both low-level and high-level metadata to video scenes presents some 
interesting challenges with storage synchronization.  MPEG-7 has emerged as a 
multimedia content description standard.  However, MPEG-7 does not specify any 
standard for automatic AV description extraction or attaching of metadata to actual 
AV content.  Commercial DV tapes allow minimal storage of metadata information 
like timestamps, but capture software rarely preserves this information and there is no 
clear standard that DV camera manufacturers follow.  More importantly, these 
metadata storage units typically hold very limited information so they do not have the 
space to store a lot of metadata.  Another approach is to store the information on a 
separate medium, such as another DV tape or compact flash, but this presents 
problems with synchronization.  Now the user is burdened with two physical artifacts 
that add more complexity to the system when importing the videos into an archive or 
video editing tool. 
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Our solution is to multiplex the metadata directly into the raw uncompressed video 
captured from a digital video camera.  We accomplish this by replacing every 60th 
frame (every two seconds when capturing at 30 fps) with a binary encoding of the 
metadata into the frame.  So, at the 640 X 480 resolution of the digital camcorder in 
our prototype, there is 921 KB of space available for two seconds of metadata.  When 
the video is extracted from the camera, the metadata is decoded from the raw video 
and the metadata frames are replaced with the previous frame.  We found that even if 
the frame is not removed, there is very little perceptible difference between the 
encoded and non-encoded video.  However, a problem arises when the video is 
compressed.  Because the metadata frame is likely to be very different from the rest of 
the video frames (as a result of the encoded data), the video does not compress well.  
Replacing the metadata frame with the previous frame before compression alleviates 
this problem. 

We also explored a simple steganographic technique that does not require 
replacing the metadata frame and encodes the metadata information in the least 
significant bits (LSBs) of the whole video frame.  In other words the data is encoded 
using the last bits of the RGB values for each pixel.  This scheme preserves the 
content of the video frame and is still visually similar to the original frame.  This 
frame has a negligible impact on video compression and almost no perceptible 
difference during video playback (see figure 4).  The tradeoff with this scheme is that 
at 640 X 480 the potential storage space decreases to 115 KB for 1 LSB, which is still 
enough space in our experience.  Figure 4 shows the difference in picture quality for 
the metadata frame using more LSBs for increased storage.  The metadata stays 
resident until compressed to another format.  Although not used in the ContextCam, a 
compression resistant steganographic encoding technique [6] could have also been 
used to preserve the metadata through compression. 

7  Interacting with the ContextCam 

Having presented the ContextCam, we now explore the user experience of interacting 
with a point of capture annotation system.  The ContextCam provides automated real-
time point of capture annotation.  Attributes like time, location, and people are 
attached to video with no human intervention, freeing the user to capture and enjoy 
the moment.  Similarly, point of capture annotation also frees much of the burden of 
annotation after capturing the video.  Browsing, filtering, and authoring capabilities of 
our video archive system briefly described in Section 2 are available immediately 
after recording. 

Although our prototype ContextCam is a bulky modified laptop computer, the 
sensing hardware could be added to a commercial video camcorder with relatively 
little added bulk.  The computational capabilities to support the active tagging 
triangulation and Bayesian inference engine are not computationally expensive. 
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Figure 4: An example of metadata encoded in each 8 bit RBG value for each pixel.  
Top left: Original Picture.  Top right: Metadata encoded in 1 LSB.   Bottom left: 
Metedata encoded in 2 LSBs.  Bottom right: Metadata encoded in 3 LSBs. 

 
What remains to be discovered is how the user would interact with the inference of 

high-level semantic metadata in order to accept or correct predictions while recording.  
Many digital video cameras already feature some sort of simple thumb or finger 
control (jog dial or arrow pad) to navigate a simple menu structure.  Figure 5 is a 
screenshot of the ContextCam’s prototype interface.  The viewfinder occupies the 
center of the screen.  The top portion of the screen shows the current event inferred by 
the real-time predictor.  A user has two options for the event predictor.  One is to set a 
threshold for an event to automatically associate with a scene.  The other is to select 
the event from a list, ordered by likelihood, displayed near the upper right portion of 
the screen.  After a user selects an event it is placed on the upper left portion of the 
screen.  When the ContextCam suspects an event change, the currently selected event 
begins to flash.  The user can either ignore the cue or select another event from the 
list.  From our experience we found that two levels of event tagging were sufficient: 
event and sub event.  A user can modify the sub event by pulling up the sub event list 
(same choices as the event list) and selecting the appropriate event.  The ContextCam 
only uses one level when set to automatically assign event tags. 

The ContextCam (see Figure 2) is equipped with a short-range, noise-canceling 
microphone on the back of the camera that is designed to capture audio commentary 
from the videographer.  Although not currently implemented, we can imagine using 
the voice input and keyword spotting to test against the list of all previously entered 
events, providing further suggestions to the predictor.  A relatively small dictionary of 
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current metadata tags in the family archive makes this a feasible real-time solution 
with existing speech technology. 

Similar in spirit of NaviCam [25, 26], the ContextCam can provide an augmented 
interaction experience by overlaying context information (who, when, where) on the 
screen while capturing a scene (see figure 6). 
 
 

 
Figure 5: A screenshot of the interface on the ContextCam. 

 

 
Figure 6: The ContextCam showing some live metadata (who and where) currently in 
the scene while capturing.  The upper portion of the screen shows a thumbnail and 
name of each person currently in the view of the camera. 
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8  Conclusions 

The ContextCam is a point of capture video annotation system that integrates a 
variety of sensing techniques to attach metadata of when, where and who directly to 
recorded video. It also uses simple mappings to infer high-level information of when 
and where, and a Bayesian predictor that uses point of capture metadata and past 
annotation history to suggest what event is currently being recorded. We presented the 
design of the ContextCam in detail and suggested how prediction capabilities and 
other features of audio annotation might be wrapped seamlessly into the video 
recording experience.   

The original motivation of the ContextCam was to help reduce the arduous and 
time-consuming task of manual annotation of home videos, further amplifying the 
capabilities for filtering and sharing a family’s recorded history.  There may be other 
uses for point of capture annotation. For example, Su et al. suggest that video 
annotation at the point of capture using networks of wireless sensors might 
dramatically increase the capabilities for film production [28]. If we increase the 
accuracy of the ContextCam ultrasonic sensing by placing two more receivers on a 
vertical axis to determine angle of elevation, we could produce more 3-D tracking 
information, providing the potential for interesting visualizations of the recorded data.  
This would even allow for person identification after an event (e.g., “Who is that 
person standing next to Grandma?”) or even during the event (e.g., when you lose a 
small child while on vacation). Most importantly, except for some issues with 
deploying tags and associating them to the ContextCam, all of the capabilities 
discussed in this paper are possible today without tremendous technology.  For the 
visions of ubiquitous computing to become a reality, we need to see more examples of 
these kinds of capabilities made real in our everyday lives. 
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