
Beyond Mobile Telephony: Exploring Opportunities for Applications on
the Mobile Phone Handset

Shwetak N. Patel and Gregory D. Abowd

College of Computing & GVU Center, 801 Atlantic Drive, Atlanta, GA 30332-0280, USA

{shwetak, abowd}@cc.gatech.edu

Abstract
As mobile phone handsets attain increasing capabilities, we see many more opportunities
for novel applications development. These handsets are typically characterized as
constrained computing platforms, due to limitations in computing, storage and interface
capabilities. Specialized development environments, such as J2ME, allow for cross-
platform development that respects these limitations. While it is important to respect
these resource constraints, we also want to highlight some of the unique features of
mobile phones, such as high quality audio, constant connectivity and comfortable form
factor for use as device to interact with the physical world. In this paper, we discuss the
J2ME development environment for current mobile phones and demonstrate applications
we have developed that respect the resource constraints while simultaneously exploiting
the unique features of these commercially available devices. This paper is intended to
whet the appetite of potential developers and designers for this important emerging
platform.

Category of paper relative to this special issue:

• Applications, particularly in non-traditional settings

• Novel functions for handheld devices

• Interaction techniques for small devices

• Wireless-phone computing

1. Introduction

The widespread availability and popularity of mobile phones presents us with new
opportunities for constantly available services. Compared with their predecessors of even
a few years ago, today’s mobile phones come with significant computational capabilities,
a nearly always-on network connection, and audio and display systems. Mobile phones
are popular (for example, there are over 110 million mobile phone subscribers in the US)
and the typical user has one nearby at almost all times. The mobile phone handset is a

viable wearable computing alternative, and we should consider this opportunity more
seriously.

Applications for mobile phones have been limited to standard telephony or messaging
services, PDA activities (calendar and contact management) and games. In this paper, we
want to demonstrate that viewing a handset as a generic computing platform with some
unique capabilities opens up the possibility for a variety of interesting applications.

These handsets do have resource constraints with respect to storage, computation,
network bandwidth and physical I/O. As a large variety of handsets are introduced to the
market, there is a need for a fairly consistent and flexible programming environment.
Sun introduced the J2ME (Java 2 Micro Edition) development environment in 1999 to
provide a cross-platform programming standard geared towards mobile and embedded
devices with limited storage and processing power. More interestingly, the unique
features of these handsets, specifically high quality audio, nearly constant network
connectivity and comfortable form factor, open up many opportunities for creative
application development. J2ME can be extended to exploit vendor-specific features of a
handset.

In this paper, we present the J2ME development architecture for mobile devices,
specifically mobile phone handsets. We explore the development of J2ME applications
for these handsets, known as MIDlets, in terms of memory consumption, storage,
graphics, audio, user input, networking and IO, and security. We survey the unique
functionality of commercially available Java-enabled phones, emphasizing features that
can be exploited through extensions to J2ME. We then demonstrate a variety of
applications developed for a particular handset, the Motorola iDEN i95cl. These
applications and interaction techniques demonstrate basic features of mobile and
ubiquitous computing applications, namely automated capture, context-awareness and
seamless interaction between the electronic and physical world. While each application
is itself interesting, the main purpose of this paper is to encourage others to similarly
explore handset applications more creatively.

2. J2ME Programming Environment for Mobile Phones

J2ME is a highly optimized runtime environment that looks similar to the well-known
J2SE (Java 2 Standard Edition). However, J2ME does not contain many of the
heavyweight classes found in J2SE. Rather those classes have been rewritten with a
smaller footprint and with low power consumption in mind. The Connected, Limited
Device Configuration (CLDC) and the Mobile Information Device Profile (MIDP) have
emerged as J2ME standards for mobile phone applications development.

2.1 J2ME Architecture

The J2ME programming suite for mobile phones consists of three main layers: Java VM,
Connected Limited Device Configuration (CLDC), and Mobile Information Device

Profile (MIDP). OEM specific java APIs provide additional functionality not available in
the J2ME suite. Applications may be developed on top of any of these layers, but most
MIDlets are typically built using the MIDP API.

 OEM Specific API

)

C

P

S

• Java VM
Memory),
KB in siz
memory.
little as 1
available
512KB to
and requir

• CLDC:
provides
constraine
java.util,
utilities.

• MIDP: M
which inc
set of API
phone app
Java prog
implemen
The devic
KB of RA

 HOST O
 JAVA VM (KVM
 CLD
Figure1

: The m
 usually r
e and is sp
 The KVM
60 KB of
which is d
 1MB of
es the mo

CLDC is
the core
d devices
java.micro

IDP prov
ludes netw
s in MID
lications
ramming
ting MIDP
e screen m
M, and 32
MID
: J2ME Development Architecture Stack

obile Java VM, also know as KVM (Kilobyte Virtual
esides on top of the host OS. The KVM is about 40–80
ecifically targeted toward devices with limited power and
 runs on 16 or 32-bit RISC/CISC microprocessors with as

 total available memory. The Java HotSpot VM is also
esigned for devices with 32-bit RISC microprocessors and
available memory. The Java VM is very device specific
st porting across platforms.

 the configuration layer of the J2ME architecture. It
lower level functionality for memory and resource

. CLDC consists of four main packages: java.io, java.lang,
edition.io, which facilitates the bare minimum IO and

ides the core application functionality for mobile devices,
ork connectivity, data storage, and user interfaces. The

P forms the basis of the programming interface for mobile
development. MIDP and CLDC constitute the complete
and runtime environment for mobile phones. Devices
 and CLDC must adhere to some minimum requirements.
ust have at least a 96X54 pixel screen size, at least 128

 KB of heap space.

• OEM Specific API: In addition to the CLDC and MIDP API, manufacturers
offer additional APIs specific to their products. These APIs allow access to
proprietary features and functionality available only on certain mobile phones.
Such things may include access to the phone’s audio, camera, vibrator, or
lighting systems.

2.2 Addressing resource constraints for the mobile handset

Limited resources and a small display screen present many challenges when developing
applications for mobile phones. We present various J2ME development constraints that
may limit applications and present ways to workaround these limitations.

2.2.1 Memory

A typical high-end J2ME-enabled mobile phone like the Motorola iDEN i95cl has about
1.5 MB of data memory, 1.5 MB program memory, and 640 KB of heap memory. The
limited program space requires very compact code for each application. Most handsets
already enforce a maximum MIDlet size to ensure proper installation and execution of
applications on their respective devices. For example, the Motorola iDEN i95cl has a
maximum MIDlet size of 160 KB and the Nokia 3410 has a maximum size of 30 KB.
Some handsets may not enforce a maximum limit, but MIDlets larger than the specified
maximum size may not perform properly.

Currently there are two methods of trimming MIDlets. The first way is to manually
reduce the size of resource files. This may involve reducing the quality or size of images
used in the application. Another way is to run a MIDlet through an obfuscation tool. An
obfuscator trims a MIDlet by removing and renaming methods and variables. ProGuard
and JAX are two example obfuscators that can be used on MIDlets. An obfuscator can
help ensure that all unnecessary code is eliminated from the MIDlet.

The limited amount of heap space may cause problems during runtime. Large static
buffers and temporary stores may quickly use up most of the available heap space. So,
programs must avoid having redundant stores of data in memory. In addition, limiting
the number of object instances can help save heap space. One way to conserve heap
space is to dereference objects to null as soon as the object or data structure is no longer
needed so that the garbage collector can release the space.

2.2.2 Storage

MIDP specifies at least 8 KB of persistent data storage called the Record Management
System (RMS). Some of the high-end mobile phones have over 1.5 MB of storage.
J2ME uses a record-oriented database for the persistent data store. In addition, most

handhelds have a limit of 1024 addressable record stores, independent of total storage
space. Since a series small reads and writes are slow, it is faster to read and write large
chunks of data at a time. The reason for this is that there is a big overhead to initiate the
record store and transferring large chunks ensure we only pay the penalty once.
However, if the chunks are too big then there will be noticeable delays during the
application runtime. The optimum record size specified for the i95cl is 512 bytes.

2.2.3 Graphics and Graphical User Interfaces

The latest mobile phones offer color display screens of about 120X150 pixels with 8 to
16 bit color graphics capabilities. The default MIDP UI package is the Limited
Connected Device User Interface (LCDUI). This provides a limited number of UI
components like lists, forms, choice groups and labels. LCDUI is used to develop
graphical applications relatively quickly. The LCDUI Canvas class can also be extended
to draw custom graphics and get access to raw key presses. Many handsets also support
PNG and JPEG images that can be directly displayed in a MIDlet. However, images
should be limited to only a few since they require lots of memory. Even though LCDUI
provides a lightweight widget for quick development, it is very limited in the kinds of UIs
that can be built. Motorola’s Lightweight Window Toolkit (LWT) is an extension to
MIDP to address these limitations. It provides a very flexible UI API similar to the J2SE
Swing toolkit. Currently the LWT provides almost complete control over the layout of
components and allows for easy custom component development. LWT allows various
components to be placed within a container with absolute or relative locations. Each
component also has an associated component listener for event handling.

One problem with directly drawing to the LCDUI or LWT canvases, especially with an
animation, is flicker. MIDP does not directly support double buffering. So, one solution
is to have the canvas thread paint the canvas off screen and then switch the contents at the
end of the repaint call. There may still be a slight flicker but it is usually as a result of the
LCD panel on the mobile phone.

2.2.4 Audio

Most handsets support direct MIDI playback provided that the file resides locally. A
Java Specification Request (JSR) for a more sophisticated mobile media framework,
called the Mobile Media API, has been submitted and is currently in development. The
Mobile Media API is a lightweight version of the Java Media Framework so that it fits
within the constraints of the CLDC. The MIDP 2.0 specifications include a subset of the
Mobile Media API.

For now some handsets like the i95cl provide access to the audio system with a
VoiceNote API. The VoiceNote API uses the phone’s audio to provide a way for
applications to record and playback audio files. The API does not directly facilitate
moving forward or backward in the audio samples. However, manually traversing the

byte array containing the audio can allow some control over the audio if the encoding
scheme is known and we use this technique in the first application discussed below.

2.2.5 User Input

MIDP provides low-level and high-level access to receive user input from a UI. The low-
level control allows access to the raw key presses on the mobile phone such as the button
on the outside of phones. The high-level control is always associated with a widget and
actions are only reported when the user interacts with that specific widget. Both low-
level and high-level controls may be used in the same MIDlet, but not at the same time.

Quick text entry is an issue with handsets. Many phones support smart text entry schemes
like T9, which allows for faster text input by reducing the number of multiple key presses
for characters and symbols. Most handsets automatically enable T9 when a text field or
text box has focus of control, thus requiring almost not additional coding. For more
flexibility, the T9 API allows for the direct handling of T9 engine events and allows the
setting of custom text from within a MIDlet.

2.2.6 Networking and external interfaces

J2ME provides a variety of networking features and many handset manufacturers offer
functionality beyond what is specified in MIDP. Some networking features are HTTP,
HTTPS, TCP, SSL Secure Sockets, Server Sockets, and UDP. The number of concurrent
sockets depends on the available resources available on the mobile phone. A typical
high-end mobile will support 1 Server Socket, 7 TCP sockets, and 12 UDP sockets.
J2ME also supports serial port access on the mobile phone for tethered devices like GPS
receivers, barcode scanners, and other peripherals.

Since networking sockets are usually blocking, J2ME threads are used to process network
activity while the normal application flow continues. There is not a limit on the number
of threads that can be spawned during a MIDlet session, but the available memory and
the limit on the number of concurrent sockets limits the number of threads that can be
created.

Packet data cellular network connections offered by providers like Nextel and AT&T
provide about 14.4 kbps of bandwidth. Cellular networks typically have high latency and
are very “bursty” in nature, which may make developing network streaming applications
difficult. Streaming applications need to buffer part of the content in local memory.
Most network application benefit by sending large chunks of data at a time to avoid the
latency delays between data segments.

Higher bandwidth network connections are already available by Nextel via their
Packetstream Gold plan, which utilizes compression technology to achieve about 56
kbps. Sprint’s 3G network will provide up to 144 kbps of packet stream data.

2.2.7 Security

MIDP does not directly support security protocols. Most security is provided through the
OEM APIs like SSL sockets and HTTPS. Many OEM APIs like Motorola offer
lightweight cryptography such as message digest (MD5 and SHA-1), ciphers (DES,
DESede, AES, and RC4), digital signatures (ECDSA) and key agreements (DH and
ECDH). MIDP 2.0 only incorporates SSL sockets and HTTPS sockets in their new
specifications.

3. Some novel applications

While the resource characteristics of handheld devices do constrain application
development somewhat, it is the promise of their novel features that should drive more
creative application development in the future. We now present a collection of J2ME
applications developed at Georgia Tech for the Motorola iDEN i95cl. The i95cl has a
large 120X168 pixel screen with 8 bits of color graphics. The phone has 1.5 MB of
program and data space. The phone is serviced with a static routable IP address and the
standard 14.4 kbps packetstream data service, provided by Nextel.

We have previously described some of the main features of mobile and ubiquitous
computing applications: [Abowd et al. 2002]

• automated capture of live experiences for later access;

• context-awareness, leveraging automatically sensed information as implicit input
to affect application behavior; and

• promoting a natural and seamless interaction between the physical and electronic
worlds.

We will first present an example of an automated capture application to support near-
term recall of conversations that benefits from the exceptional microphone capabilities of
the handset. We next show two examples of context-aware behavior that leverage the
constant connectivity of the device. The first example demonstrates a previously
motivated context-aware messaging service and the second example provides unique
context-aware capabilities for universal remote controls. Both of these examples exploit
an indoor positioning system developed as part of the Aware Home Research Initiative.
The last few applications demonstrate a novel, laser-assisted selection technique that
establishes two-way connections between the handset and physical artifacts in the
environment. The comfortable form factor of the i95cl makes it an ideal pointing device
for natural, at-a-distance interaction with the physical world.

3.1 The Personal Audio Loop

Have you ever had difficulty resuming an interrupted conversation with another person
because of some interruption? The Personal Audio Loop (PAL) is designed as a near-
term audio memory device to help recover from interrupted conversations. PAL
continuously records the last 15 minutes (or some other fixed time duration) of audio and
provides a simple graphical interface and navigation strategy to allow an individual to
skim the recorded conversation and “browse” the audio in hopes of recovering the
content of an interrupted conversation. PAL is not an archiving service, a clear privacy
concern. Rather, PAL is a near-term memory aid.

A requirement for PAL is reasonable quality audio recording at all times, and the mobile
handset is the first commercial platform to provide this. We have built a number of PAL
prototypes on various handhelds, with two problems. First, the quality of the microphone
on the handhelds was often too poor to be able to understand the recorded audio. Second,
recording only worked when the handheld was placed out in the open and nearby the
people being recorded. The i95cl handset, like many other mobile phones and different
from most PDAs, has an excellent microphone. We found that the i95cl’s microphone is
sensitive enough to pick up voices in a meeting room with the phone closed and in a shirt
pocket. The PAL application uses the VoiceNote API to get access to the phone’s
VOCODER. In short, this handset is an ideal audio recording device, more suitable to
the PAL application than any previous device we explored.

Ideally, the PAL application runs continually on the handset. The default mode is
recording, but that mode is switched to either pause (to halt recording, for example,
during a phone conversation) or playback to browse the recorded audio to recover from a
lost conversation. Since the VoiceNote API does not allow direct control over the audio
stream, we take the raw audio byte array and traverse it to playback at specific times
within the audio stream. The phone has enough memory to support up to 1.5 hours of
audio; we chose an arbitrary limit of 15 minutes for the recorded audio buffer.

In playback mode, quick and simple navigation through the audio stream is important.
Figure 2 shows how PAL is controlled, both using the available side buttons of the
handset as well as an optional graphical display for visual feedback. When a user needs
to re-listen to part of a conversation, the up button is used to skip back a fixed amount of
time in the recorded audio stream. The down button skips forward. This simple forward
and backward jumping allows a user to skim a conversation to find a portion that reminds
them of some salient feature of a previous conversation. It remains an empirical design
question what the optimal forward and backward skip increments should be. For
example, one popular digital video recorders on the market today provides a skip forward
of 30 seconds and a skip backward of 7 seconds for browsing recorded television. Some
researchers have explored audio skimming techniques [Arons, 1993], but not for the
particular case of primarily backward skimming that would dominate a near-term
reminder application like PAL.

PAL can be operated with the handset closed for complete heads-up operation. However,
the optional graphical display provides a little more information to facilitate skimming.
Operating on the metaphor of an analogue clock, the display shows the full 15-minute

audio buffer as a circle. There are two moving “hands” on the clock display. The first
hand (in blue) moves during recording to show that audio is being recorded. As the
recording hand sweeps across the clockface, it leaves a lighter blue trail. Simple features
of the recorded audio (eg., amplitude) can be used to alter this recording trail (not shown
in Figure 2). The second movable hand shows the playback position (in red) relative to
the recording position. By looking at the display, the user can position the playback point
relative to the current recording point. Hashmarks along the perimeter of the clock face
indicate minute marks, to further facilitate positioning the playback pointer relative to the
recording point.

Figure 2: PAL Application running on the right and control on the i95cl for the PAL application on the

right.

3.2 A context-aware universal remote

Many researchers are exploring the challenges of handling context. The most popular
form of context is location, so we are interested in seeing what kind of applications can
be deployed on mobile phones that take advantage of knowing where the device is
located. Much commercial effort is going into emergency services based on location,

such as e-911 in the U.S. The cellular telephony infrastructure provides a way to estimate
the position of a handset based on signal strengths to a collection of base stations.
Service providers do not make this positioning information available in the programming
environment for the handhelds. Motorola provides a GPS chip for some of its phones
(eg., the i88s handset) with a Location API extension to its J2ME environment, and other
vendors will likely provide similar capabilities. For indoor environments, it is not clear
that either of these solutions would work very well, for reasons of resolution and
coverage. A desirable solution is to use existing indoor location services that
communicate to the handset via its network connection. In the Aware Home Research
Initiative at Georgia Tech, we have developed a room-level positioning system for
tracking people using passive RF ID. Assuming we know the identity of the person
holding the handset at any time, we can inform the handset where it is located based on
the location of that individual.

 A popular application for handheld devices is the universal remote control. Many people
are already comfortable carrying their handset with them all the time and the comfortable
form factor can be exploited for other in-home applications. We explored how to enable
the mobile phone as a universal remote. As the number of remotely controllable devices
in the home increases, we need a way to reduce the number remote controls and ease
their use. One problem, addressed by Nichols et al. (2002), attempts to generate the
interfaces for controlling a device automatically on a handheld platform.

One of the challenges for a universal remote is how to select the device to control. Our
first solution was to leverage an indoor location service and the network connectivity to
the phone to augment the universal remote application with knowledge of where it was
being operated. Figure 3 shows the floor plan interface for our mobile phone universal
remote control application. This interface allows zooming in and out between the overall
floor plan and individual rooms. By default, the view selected is the room view for the
current location of the user and device and inside this room view is a list of controllable
devices that can be selected for further interaction. As the user changes rooms, the
applications updates appropriately with new devices. This scheme helps reduce the
number of items the user must search through to find the needed device. The user can
control devices in other rooms by navigating the interface to the room containing that
device. The user can also zoom out to different viewing levels, such as a single floor plan
or the entire house. The application also takes advantage of the external buttons available
on the phone. For example, the up/down buttons on the side of the i95cl (see Figure 2)
can dim lights or change the HVAC temperature. Our particular application can also be
used while outside the house to check the status of the lights or to turn on the HVAC
system.

Figure 3: Screenshots of Universal Remote at different modes of control (floor level, room level, and

device level)

3.3 Laser-assisted selection of physical objects

We are interested in how the constant companion of the mobile phone can facilitate our
interactions with the physical world. We have considered using it as a selection device
for initiating interactions with physical objects in the environment. Laser pointers, for
example, are easy to use and can provide a natural feedback mechanism for pointing at
objects from a distance. Several researchers have investigated how to detect what object
a laser pointer is selecting. Most of those techniques have involved using computer
vision to track the laser spot on a surface. We opted for a strategy that would not require
the camera infrastructure, similar to the FindIt Flashlight (Paradiso et al, 2002). The user
simply points a laser signal at an active tag (see Figure 4), which can respond when hit
(see Patel & Abowd, 2003 for a more detailed account).

We integrated a laser pointer onto the Motorola handset and controlled it through the
buttons on the phone (see Figure 4). By modulating the laser signal, we can send
messages from the phone to the active tags. The active tags associated with specific
devices in the environment detect these messages. The tags are connected to some
network infrastructure, which provides a two-way interaction mechanism between
environment and handset.

One demonstration of the 2-way laser-assisted selection was to integrate it with the
universal remote control application described above. Previously, we showed how
location information was used to filter the number of possible devices to select for
subsequent control. Another alternative is to simply point at the device to control and
have its interface delivered to the phone. We implemented this capability by attaching
active tags to various home appliances. The phone would send its identity, that is, its
static IP address, to an active tag, and the tag would respond to the phone via the phone’s
data network with information on how to control it.

We also considered using this 2-way selection technique outdoors. Active tags can be
placed on road signs and billboards, using large tags connected to some wireless
telephony service. When the billboard is spotted, the user selects it in order to receive
additional information to the handset. At an airport, these active sensor tags can be
placed in the logos of the airline companies. As you walk through the airport, you can
simply identify one of these tags and the gate and flight information is directly sent to the
handset.

Figure 4: On the left, a laser instrumentation of Motorola iDEN i95cl. In the middle, an example of a long-

range active tag that responds and decodes. On the right, a prototype of an active tag embedded within a
light switch and wall plate.

A particular instance of this outdoor interaction is the Listen 2 Me Digital Poster
application we developed for radio station posters placed in the environment. Figure 5
shows an example of interaction with the local Georgia Tech student FM radio station,
WREK. The digital posters advertising the radio station have active laser tags built into
them. After a user selects one of these posters with a laser instrumented handheld, an
audio sample from the radio station is streamed to the handheld and played back on the
handheld. About 5 seconds of the audio is buffered before playback begins, because of
the high latency of the network. The audio sample stream comes back either through the
voice network or the data network. The mode of transaction is determined when the laser
first selects the poster. If the message sent to the poster contains an IP address, then the
audio returns through the data network and is played back directly on the mobile phone.
If the message sent to the poster contains the handsets phone number, the audio returns
through a phone call placed to the mobile phone. The phone call solution may be the
most attractive solution for mobile phones that do not have the appropriate audio
decoders. Mobile phones with advanced audio systems (supporting MP3 playback, for
example) may request higher quality audio samples.

Figure 5: Radio Station Playback Screenshots

Conclusions
The purpose of this paper was to explore and further motivate the use of a mobile phone
handset as a generic computing platform. There are important resource constraints to
consider and emerging development environments, such as J2ME are mature enough to
enable a larger community to program applications for the rich variety of commercial
handsets in light of these constraints. In addition, most handsets have special features that
can be exploited for a variety of personal and mobile applications. In this paper, we
exploited the advanced audio capabilities, near-ubiquitous network connectivity and
comfortable form factor of a particular handset, the Motorola i95cl, to demonstrate how
more creative applications can be produced. We demonstrated applications for automated
capture of audio, context-aware capabilities and natural interaction with the physical
environment.

Though we have not subjected these applications to any empirical user study, it is clear
that many technological and usability challenges remain. How do we provide simple
switching between the many applications that could run on a handheld, some of which we
suggest should be running nearly all the time (e.g., the near-term reminder service of
PAL) and some of which we all expect to work as usual (standard telephony and
messaging)? Power consumption remains an issue. The PAL application is as power
hungry as normal talk time on the Motorola handset, currently limiting it to 2 hours
continuous use. The laser selection technique is powered by a separate identical battery
that fits within the handset. Despite these remaining concerns, we believe applications
like the ones presented in this paper offer a compelling glance at a viable general-purpose
computing platform with many of the advantages of instantaneous interaction that has
driven the wearable and ubiquitous computing research communities.

Acknowledgments
The authors would like to thank Khai Truong and Mike Holloway for initial inspiration of
the Personal Audio Loop, as well as access to a variety of handheld implementation of
PAL to base our work upon. A special thanks goes to Motorola Inc., in particular Joe

Dvorak of iDEN Advanced Technologies, for the continued support of the Aware Home
Research Initiative; and the donation of the i95cl handsets and service from Nextel
required for this work.

References
1. Abowd, G.D., E. D. Mynatt and T. Rodden. (2002) The human experience. IEEE

Pervasive Computing. Inaugural issue focusing on reaching Weiser’s vision. Volume
1, Number 1, pp. 48-57.

2. Arons, B. (1993) SpeechSkimmer: Interactively Skimming Recorded. Proceedings of
the ACM Symposium on User Interface Software and Technology (UIST ’93), p.187-
196.

3. Ma, H. and J. A. Paradiso. (2002) The FindIT Flashlight: Responsive Tagging Based
on Optically Triggered Microprocessor Wakeup. Proceedings of Ubicomp 2002,
Springer-Verlag Lecture Notes in Computer Science, Volume 2498, pp. 160-167,
2002.

4. Motorola Global Telecom Solution Sector. (2002) "i95cl Multi-Communication Device
J2ME Developers' Guide". Motorola, 2002.

5. Nichols, J., B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld and M.
Pignol. (2002) Generating remote control interfaces for complex appliances.
Proceedings of the 15th annual ACM symposium on User interface software and
technology (UIST 2002), ACM Press, Paris, France, pp 161—170.

6. Patel, S.N. and G.D. Abowd. (2003) A 2-way Laser-assisted Selection Scheme for
Handhelds in a Physical Environment. Technical Note submitted for review to
Ubicomp 2003.

	1. Introduction
	Conclusions
	Acknowledgments
	References

